Download or read book Fractional Hermite Hadamard Inequalities written by JinRong Wang and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-05-22 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book extends classical Hermite-Hadamard type inequalities to the fractional case via establishing fractional integral identities, and discusses Riemann-Liouville and Hadamard integrals, respectively, by various convex functions. Illustrating theoretical results via applications in special means of real numbers, it is an essential reference for applied mathematicians and engineers working with fractional calculus. Contents Introduction Preliminaries Fractional integral identities Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals Hermite-Hadamard inequalities involving Hadamard fractional integrals
Download or read book Fractional Hermite Hadamard Inequalities written by JinRong Wang and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-05-22 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book extends classical Hermite-Hadamard type inequalities to the fractional case via establishing fractional integral identities, and discusses Riemann-Liouville and Hadamard integrals, respectively, by various convex functions. Illustrating theoretical results via applications in special means of real numbers, it is an essential reference for applied mathematicians and engineers working with fractional calculus. Contents Introduction Preliminaries Fractional integral identities Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals Hermite-Hadamard inequalities involving Hadamard fractional integrals
Download or read book Fractional Calculus written by Dumitru Baleanu and published by World Scientific. This book was released on 2012 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods.
Download or read book Fractional Order Analysis written by Hemen Dutta and published by John Wiley & Sons. This book was released on 2020-08-06 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the new research in the field of fractional order analysis Fractional Order Analysis contains the most recent research findings in fractional order analysis and its applications. The authors—noted experts on the topic—offer an examination of the theory, methods, applications, and the modern tools and techniques in the field of fractional order analysis. The information, tools, and applications presented can help develop mathematical methods and models with better accuracy. Comprehensive in scope, the book covers a range of topics including: new fractional operators, fractional derivatives, fractional differential equations, inequalities for different fractional derivatives and fractional integrals, fractional modeling related to transmission of Malaria, and dynamics of Zika virus with various fractional derivatives, and more. Designed to be an accessible text, several useful, relevant and connected topics can be found in one place, which is crucial for an understanding of the research problems of an applied nature. This book: Contains recent development in fractional calculus Offers a balance of theory, methods, and applications Puts the focus on fractional analysis and its interdisciplinary applications, such as fractional models for biological models Helps make research more relevant to real-life applications Written for researchers, professionals and practitioners, Fractional Order Analysis offers a comprehensive resource to fractional analysis and its many applications as well as information on the newest research.
Download or read book Convex Functions Partial Orderings and Statistical Applications written by Josip E. Peajcariaac and published by Academic Press. This book was released on 1992-06-03 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research-level book presents up-to-date information concerning recent developments in convex functions and partial orderings and some applications in mathematics, statistics, and reliability theory. The book will serve researchers in mathematical and statistical theory and theoretical and applied reliabilists. Presents classical and newly published results on convex functions and related inequalities Explains partial ordering based on arrangement and their applications in mathematics, probability, statsitics, and reliability Demonstrates the connection of partial ordering with other well-known orderings such as majorization and Schur functions Will generate further research and applications
Download or read book An Introduction to the Fractional Calculus and Fractional Differential Equations written by Kenneth S. Miller and published by Wiley-Interscience. This book was released on 1993-06-02 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Commences with the historical development of fractional calculus, its mathematical theory—particularly the Riemann-Liouville version. Numerous examples and theoretical applications of the theory are presented. Features topics associated with fractional differential equations. Discusses Weyl fractional calculus and some of its uses. Includes selected physical problems which lead to fractional differential or integral equations.
Download or read book Fractional Differentiation Inequalities written by George A. Anastassiou and published by Springer Science & Business Media. This book was released on 2009-05-28 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the author presents the Opial, Poincaré, Sobolev, Hilbert, and Ostrowski fractional differentiation inequalities. Results for the above are derived using three different types of fractional derivatives, namely by Canavati, Riemann-Liouville and Caputo. The univariate and multivariate cases are both examined. Each chapter is self-contained. The theory is presented systematically along with the applications. The application to information theory is also examined. This monograph is suitable for researchers and graduate students in pure mathematics. Applied mathematicians, engineers, and other applied scientists will also find this book useful.
Download or read book Classical and New Inequalities in Analysis written by Dragoslav S. Mitrinovic and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a comprehensive compendium of classical and new inequalities as well as some recent extensions to well-known ones. Variations of inequalities ascribed to Abel, Jensen, Cauchy, Chebyshev, Hölder, Minkowski, Stefferson, Gram, Fejér, Jackson, Hardy, Littlewood, Po'lya, Schwarz, Hadamard and a host of others can be found in this volume. The more than 1200 cited references include many from the last ten years which appear in a book for the first time. The 30 chapters are all devoted to inequalities associated with a given classical inequality, or give methods for the derivation of new inequalities. Anyone interested in equalities, from student to professional, will find their favorite inequality and much more.
Download or read book Convex Functions and Their Applications written by Constantin P. Niculescu and published by Springer. This book was released on 2018-06-08 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thorough introduction to an important area of mathematics Contains recent results Includes many exercises
Download or read book Dynamic Inequalities On Time Scales written by Ravi Agarwal and published by Springer. This book was released on 2014-10-30 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.
Download or read book Introduction to Interval Analysis written by Ramon E. Moore and published by SIAM. This book was released on 2009-01-01 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: An update on the author's previous books, this introduction to interval analysis provides an introduction to INTLAB, a high-quality, comprehensive MATLAB toolbox for interval computations, making this the first interval analysis book that does with INTLAB what general numerical analysis texts do with MATLAB.
Download or read book Semirings Automata Languages written by W. Kuich and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automata theory is the oldest among the disciplines constituting the subject matter of this Monograph Series: theoretical computer science. Indeed, automata theory and the closely related theory of formal languages form nowadays such a highly developed and diversified body of knowledge that even an exposition of "reasonably important" results is not possible within one volume. The purpose of this book is to develop the theory of automata and formal languages, starting from ideas based on linear algebra. By what was said above, it should be obvious that we do not intend to be encyclopedic. However, this book contains the basics of regular and context-free languages (including some new results), as well as a rather complete theory of pushdown automata and variations (e. g. counter automata). The wellknown AFL theory is extended to power series ("AFP theory"). Additional new results include, for instance, a grammatical characterization of the cones and the principal cones of context-free languages, as well as new decidability results.
Download or read book An Easy Path to Convex Analysis and Applications written by Boris S. Mordukhovich and published by Morgan & Claypool Publishers. This book was released on 2013-12-01 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical f
Download or read book Optimization Variational Analysis and Applications written by Vivek Laha and published by Springer Nature. This book was released on 2021-07-27 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes selected papers presented at the Indo-French Seminar on Optimization, Variational Analysis and Applications (IFSOVAA-2020), held at the Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India, from 2–4 February 2020. The book discusses current optimization problems and their solutions by using the powerful tool of variational analysis. Topics covered in this volume include set optimization, multiobjective optimization, mathematical programs with complementary, equilibrium, vanishing and switching constraints, copositive optimization, interval-valued optimization, sequential quadratic programming, bound-constrained optimization, variational inequalities, and more. Several applications in different branches of applied mathematics, engineering, economics, finance, and medical sciences have been included. Each chapter not only provides a detailed survey of the topic but also builds systematic theories and suitable algorithms to deduce the most recent findings in literature. This volume appeals to graduate students as well as researchers and practitioners in pure and applied mathematics and related fields that make use of variational analysis in solving optimization problems.
Download or read book Intelligent Analysis Fractional Inequalities and Approximations Expanded written by George A. Anastassiou and published by Springer Nature. This book was released on 2020-01-15 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational and fractional analysis, two areas that are very important in their own right, and which are used in a broad variety of real-world applications. We start with the important Iyengar type inequalities and we continue with Choquet integral analytical inequalities, which are involved in major applications in economics. In turn, we address the local fractional derivatives of Riemann–Liouville type and related results including inequalities. We examine the case of low order Riemann–Liouville fractional derivatives and inequalities without initial conditions, together with related approximations. In the next section, we discuss quantitative complex approximation theory by operators and various important complex fractional inequalities. We also cover the conformable fractional approximation of Csiszar’s well-known f-divergence, and present conformable fractional self-adjoint operator inequalities. We continue by investigating new local fractional M-derivatives that share all the basic properties of ordinary derivatives. In closing, we discuss the new complex multivariate Taylor formula with integral remainder. Sharing results that can be applied in various areas of pure and applied mathematics, the book offers a valuable resource for researchers and graduate students, and can be used to support seminars in related fields.
Download or read book Fractional Calculus written by Praveen Agarwal and published by Springer. This book was released on 2020-11-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects papers presented at the International Conference on Fractional Differentiation and its Applications (ICFDA), held at the University of Jordan, Amman, Jordan, on 16–18 July 2018. Organized into 13 chapters, the book discusses the latest trends in various fields of theoretical and applied fractional calculus. Besides an essential mathematical interest, its overall goal is a general improvement of the physical world models for the purpose of computer simulation, analysis, design and control in practical applications. It showcases the development of fractional calculus as an acceptable tool for a large number of diverse scientific communities due to more adequate modeling in various fields of mechanics, electricity, chemistry, biology, medicine, economics, control theory, as well as signal and image processing. The book will be a valuable resource for graduate students and researchers of mathematics and engineering.
Download or read book The Analysis of Fractional Differential Equations written by Kai Diethelm and published by Springer. This book was released on 2010-08-18 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.