EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fourier Integral Operators

Download or read book Fourier Integral Operators written by J.J. Duistermaat and published by Springer Science & Business Media. This book was released on 2010-11-03 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a useful introduction to the subject of Fourier Integral Operators and is based on the author’s classic set of notes. Covering a range of topics from Hörmander’s exposition of the theory, Duistermaat approaches the subject from symplectic geometry and includes application to hyperbolic equations (= equations of wave type) and oscillatory asymptotic solutions which may have caustics. This text is suitable for mathematicians and (theoretical) physicists with an interest in (linear) partial differential equations, especially in wave propagation, rep. WKB-methods.

Book Introduction to Pseudodifferential and Fourier Integral Operators

Download or read book Introduction to Pseudodifferential and Fourier Integral Operators written by François Treves and published by . This book was released on 1982 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fourier Integrals in Classical Analysis

Download or read book Fourier Integrals in Classical Analysis written by Christopher Donald Sogge and published by Cambridge University Press. This book was released on 1993-02-26 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced monograph concerned with modern treatments of central problems in harmonic analysis.

Book The Analysis of Linear Partial Differential Operators IV

Download or read book The Analysis of Linear Partial Differential Operators IV written by Lars Hörmander and published by Springer Science & Business Media. This book was released on 2009-04-28 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "Volumes III and IV complete L. Hörmander's treatise on linear partial differential equations. They constitute the most complete and up-to-date account of this subject, by the author who has dominated it and made the most significant contributions in the last decades.....It is a superb book, which must be present in every mathematical library, and an indispensable tool for all - young and old - interested in the theory of partial differential operators." L. Boutet de Monvel in Bulletin of the American Mathematical Society, 1987 "This treatise is outstanding in every respect and must be counted among the great books in mathematics. It is certainly no easy reading (...) but a careful study is extremely rewarding for its wealth of ideas and techniques and the beauty of presentation." J. Brüning in Zentralblatt MATH, 1987 Honours awarded to Lars Hörmander: Fields Medal 1962, Speaker at International Congress 1970, Wolf Prize 1988, AMS Steele Prize 2006

Book Bounded and Compact Integral Operators

Download or read book Bounded and Compact Integral Operators written by David E. Edmunds and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph presents some of the authors' recent and original results concerning boundedness and compactness problems in Banach function spaces both for classical operators and integral transforms defined, generally speaking, on nonhomogeneous spaces. Itfocuses onintegral operators naturally arising in boundary value problems for PDE, the spectral theory of differential operators, continuum and quantum mechanics, stochastic processes etc. The book may be considered as a systematic and detailed analysis of a large class of specific integral operators from the boundedness and compactness point of view. A characteristic feature of the monograph is that most of the statements proved here have the form of criteria. These criteria enable us, for example, togive var ious explicit examples of pairs of weighted Banach function spaces governing boundedness/compactness of a wide class of integral operators. The book has two main parts. The first part, consisting of Chapters 1-5, covers theinvestigation ofclassical operators: Hardy-type transforms, fractional integrals, potentials and maximal functions. Our main goal is to give a complete description of those Banach function spaces in which the above-mentioned operators act boundedly (com pactly). When a given operator is not bounded (compact), for example in some Lebesgue space, we look for weighted spaces where boundedness (compact ness) holds. We develop the ideas and the techniques for the derivation of appropriate conditions, in terms of weights, which are equivalent to bounded ness (compactness).

Book Nonlinear Integral Operators and Applications

Download or read book Nonlinear Integral Operators and Applications written by Carlo Bardaro and published by Walter de Gruyter. This book was released on 2008-08-22 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1903 Fredholm published his famous paper on integral equations. Since then linear integral operators have become an important tool in many areas, including the theory of Fourier series and Fourier integrals, approximation theory and summability theory, and the theory of integral and differential equations. As regards the latter, applications were soon extended beyond linear operators. In approximation theory, however, applications were limited to linear operators mainly by the fact that the notion of singularity of an integral operator was closely connected with its linearity. This book represents the first attempt at a comprehensive treatment of approximation theory by means of nonlinear integral operators in function spaces. In particular, the fundamental notions of approximate identity for kernels of nonlinear operators and a general concept of modulus of continuity are developed in order to obtain consistent approximation results. Applications to nonlinear summability, nonlinear integral equations and nonlinear sampling theory are given. In particular, the study of nonlinear sampling operators is important since the results permit the reconstruction of several classes of signals. In a wider context, the material of this book represents a starting point for new areas of research in nonlinear analysis. For this reason the text is written in a style accessible not only to researchers but to advanced students as well.

Book Integral Fourier Operators

Download or read book Integral Fourier Operators written by Michèle Audin and published by Universitätsverlag Potsdam. This book was released on 2018-04-17 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of contributions based on lectures delivered at a school on Fourier Integral Operators held in Ouagadougou, Burkina Faso, 14–26 September 2015, provides an introduction to Fourier Integral Operators (FIO) for a readership of Master and PhD students as well as any interested layperson. Considering the wide spectrum of their applications and the richness of the mathematical tools they involve, FIOs lie the cross-road of many a field. This volume offers the necessary background, whether analytic or geometric, to get acquainted with FIOs, complemented by more advanced material presenting various aspects of active research in that area.

Book Fourier Integrals in Classical Analysis

Download or read book Fourier Integrals in Classical Analysis written by Christopher D. Sogge and published by Cambridge University Press. This book was released on 2017-04-27 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced monograph is concerned with modern treatments of central problems in harmonic analysis. The main theme of the book is the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. In particular, the author uses microlocal analysis to study problems involving maximal functions and Riesz means using the so-called half-wave operator. To keep the treatment self-contained, the author begins with a rapid review of Fourier analysis and also develops the necessary tools from microlocal analysis. This second edition includes two new chapters. The first presents Hörmander's propagation of singularities theorem and uses this to prove the Duistermaat-Guillemin theorem. The second concerns newer results related to the Kakeya conjecture, including the maximal Kakeya estimates obtained by Bourgain and Wolff.

Book Pseudodifferential and Singular Integral Operators

Download or read book Pseudodifferential and Singular Integral Operators written by Helmut Abels and published by Walter de Gruyter. This book was released on 2011-12-23 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. In the first chapters, the necessary material on Fourier transformation and distribution theory is presented. Subsequently the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space is developed. In order to present the deep results on regularity questions for partial differential equations, an introduction to the theory of singular integral operators is given - which is of interest for its own. Moreover, to get a wide range of applications, one chapter is devoted to the modern theory of Besov and Bessel potential spaces. In order to demonstrate some fundamental approaches and the power of the theory, several applications to wellposedness and regularity question for elliptic and parabolic equations are presented throughout the book. The basic notation of functional analysis needed in the book is introduced and summarized in the appendix. The text is comprehensible for students of mathematics and physics with a basic education in analysis.

Book Bounded Integral Operators on L 2 Spaces

Download or read book Bounded Integral Operators on L 2 Spaces written by P. R. Halmos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject. The phrase "integral operator" (like some other mathematically informal phrases, such as "effective procedure" and "geometric construction") is sometimes defined and sometimes not. When it is defined, the definition is likely to vary from author to author. While the definition almost always involves an integral, most of its other features can vary quite considerably. Superimposed limiting operations may enter (such as L2 limits in the theory of Fourier transforms and principal values in the theory of singular integrals), IJ' spaces and abstract Banach spaces may intervene, a scalar may be added (as in the theory of the so-called integral operators of the second kind), or, more generally, a multiplication operator may be added (as in the theory of the so-called integral operators of the third kind). The definition used in this book is the most special of all. According to it an integral operator is the natural "continuous" generali zation of the operators induced by matrices, and the only integrals that appear are the familiar Lebesgue-Stieltjes integrals on classical non-pathological mea sure spaces. The category. Some of the flavor of the theory can be perceived in finite dimensional linear algebra. Matrices are sometimes considered to be an un natural and notationally inelegant way of looking at linear transformations. From the point of view of this book that judgement misses something.

Book The Diversity and Beauty of Applied Operator Theory

Download or read book The Diversity and Beauty of Applied Operator Theory written by Albrecht Böttcher and published by Springer. This book was released on 2018-04-27 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents 29 invited articles written by participants of the International Workshop on Operator Theory and its Applications held in Chemnitz in 2017. The contributions include both expository essays and original research papers illustrating the diversity and beauty of insights gained by applying operator theory to concrete problems. The topics range from control theory, frame theory, Toeplitz and singular integral operators, Schrödinger, Dirac, and Kortweg-de Vries operators, Fourier integral operator zeta-functions, C*-algebras and Hilbert C*-modules to questions from harmonic analysis, Monte Carlo integration, Fibonacci Hamiltonians, and many more. The book offers researchers in operator theory open problems from applications that might stimulate their work and shows those from various applied fields, such as physics, engineering, or numerical mathematics how to use the potential of operator theory to tackle interesting practical problems.

Book Fourier Analysis and Approximation of Functions

Download or read book Fourier Analysis and Approximation of Functions written by Roald M. Trigub and published by Springer Science & Business Media. This book was released on 2004-09-07 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Fourier Analysis and Approximation of Functions basics of classical Fourier Analysis are given as well as those of approximation by polynomials, splines and entire functions of exponential type. In Chapter 1 which has an introductory nature, theorems on convergence, in that or another sense, of integral operators are given. In Chapter 2 basic properties of simple and multiple Fourier series are discussed, while in Chapter 3 those of Fourier integrals are studied. The first three chapters as well as partially Chapter 4 and classical Wiener, Bochner, Bernstein, Khintchin, and Beurling theorems in Chapter 6 might be interesting and available to all familiar with fundamentals of integration theory and elements of Complex Analysis and Operator Theory. Applied mathematicians interested in harmonic analysis and/or numerical methods based on ideas of Approximation Theory are among them. In Chapters 6-11 very recent results are sometimes given in certain directions. Many of these results have never appeared as a book or certain consistent part of a book and can be found only in periodics; looking for them in numerous journals might be quite onerous, thus this book may work as a reference source. The methods used in the book are those of classical analysis, Fourier Analysis in finite-dimensional Euclidean space Diophantine Analysis, and random choice.

Book Fourier Analysis

    Book Details:
  • Author : Javier Duoandikoetxea Zuazo
  • Publisher : American Mathematical Soc.
  • Release : 2001-01-01
  • ISBN : 9780821883846
  • Pages : 248 pages

Download or read book Fourier Analysis written by Javier Duoandikoetxea Zuazo and published by American Mathematical Soc.. This book was released on 2001-01-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autonoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university. Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, H1, BMO spaces, and the T1 theorem, are discussed. Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform in higher dimensions. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between H1, BMO, and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the T1 theorem, which has been of crucial importance in the field. This volume has been updated and translated from the original Spanish edition (1995). Minor changes have been made to the core of the book; however, the sections, "Notes and Further Results" have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.

Book Time Frequency Analysis of Operators

Download or read book Time Frequency Analysis of Operators written by Elena Cordero and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-09-21 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative text studies pseudodifferential and Fourier integral operators in the framework of time-frequency analysis, providing an elementary approach, along with applications to almost diagonalization of such operators and to the sparsity of their Gabor representations. Moreover, Gabor frames and modulation spaces are employed to study dispersive equations such as the Schrödinger, wave, and heat equations and related Strichartz problems. The first part of the book is addressed to non-experts, presenting the basics of time-frequency analysis: short time Fourier transform, Wigner distribution and other representations, function spaces and frames theory, and it can be read independently as a short text-book on this topic from graduate and under-graduate students, or scholars in other disciplines.

Book Local Fractional Integral Transforms and Their Applications

Download or read book Local Fractional Integral Transforms and Their Applications written by Xiao-Jun Yang and published by Academic Press. This book was released on 2015-10-22 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms. - Provides applications of local fractional Fourier Series - Discusses definitions for local fractional Laplace transforms - Explains local fractional Laplace transforms coupled with analytical methods

Book Introduction to Pseudodifferential and Fourier Integral Operators Volume 2

Download or read book Introduction to Pseudodifferential and Fourier Integral Operators Volume 2 written by François Trèves and published by Springer Science & Business Media. This book was released on 1980 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semi classical Analysis

Download or read book Semi classical Analysis written by Victor Guillemin and published by . This book was released on 2013 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: