Download or read book Foundations of Average Cost Nonhomogeneous Controlled Markov Chains written by Xi-Ren Cao and published by Springer Nature. This book was released on 2020-09-09 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Springer brief addresses the challenges encountered in the study of the optimization of time-nonhomogeneous Markov chains. It develops new insights and new methodologies for systems in which concepts such as stationarity, ergodicity, periodicity and connectivity do not apply. This brief introduces the novel concept of confluencity and applies a relative optimization approach. It develops a comprehensive theory for optimization of the long-run average of time-nonhomogeneous Markov chains. The book shows that confluencity is the most fundamental concept in optimization, and that relative optimization is more suitable for treating the systems under consideration than standard ideas of dynamic programming. Using confluencity and relative optimization, the author classifies states as confluent or branching and shows how the under-selectivity issue of the long-run average can be easily addressed, multi-class optimization implemented, and Nth biases and Blackwell optimality conditions derived. These results are presented in a book for the first time and so may enhance the understanding of optimization and motivate new research ideas in the area.
Download or read book Foundations of Average Cost Nonhomogeneous Controlled Markov Chains written by Xi-Ren Cao and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Springer brief addresses the challenges encountered in the study of the optimization of time-nonhomogeneous Markov chains. It develops new insights and new methodologies for systems in which concepts such as stationarity, ergodicity, periodicity and connectivity do not apply. This brief introduces the novel concept of confluencity and applies a relative optimization approach. It develops a comprehensive theory for optimization of the long-run average of time-nonhomogeneous Markov chains. The book shows that confluencity is the most fundamental concept in optimization, and that relative optimization is more suitable for treating the systems under consideration than standard ideas of dynamic programming. Using confluencity and relative optimization, the author classifies states as confluent or branching and shows how the under-selectivity issue of the long-run average can be easily addressed, multi-class optimization implemented, and Nth biases and Blackwell optimality conditions derived. These results are presented in a book for the first time and so may enhance the understanding of optimization and motivate new research ideas in the area.
Download or read book Social Informatics written by Anwitaman Datta and published by Springer Science & Business Media. This book was released on 2011-10-12 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the Third International Conference on Social Informatics, SocInfo 2011, held in Singapore in October 2011. The 15 full papers, 8 short papers and 13 posters included in this volume were carefully reviewed and selected from 68 full paper and 13 poster submissions. The papers are organized in topical sections named: network analysis; eGovernance and knowledge management; applications of network analysis; community dynamics; case studies; trust, privacy and security; peer-production.
Download or read book Continuous Time Markov Decision Processes written by Alexey Piunovskiy and published by Springer Nature. This book was released on 2020-11-09 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic and rigorous treatment of continuous-time Markov decision processes, covering both theory and possible applications to queueing systems, epidemiology, finance, and other fields. Unlike most books on the subject, much attention is paid to problems with functional constraints and the realizability of strategies. Three major methods of investigations are presented, based on dynamic programming, linear programming, and reduction to discrete-time problems. Although the main focus is on models with total (discounted or undiscounted) cost criteria, models with average cost criteria and with impulsive controls are also discussed in depth. The book is self-contained. A separate chapter is devoted to Markov pure jump processes and the appendices collect the requisite background on real analysis and applied probability. All the statements in the main text are proved in detail. Researchers and graduate students in applied probability, operational research, statistics and engineering will find this monograph interesting, useful and valuable.
Download or read book Essentials of Stochastic Processes written by Richard Durrett and published by Springer. This book was released on 2016-11-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Download or read book Mathematical Reviews written by and published by . This book was released on 2005 with total page 1852 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book SIAM Journal on Control and Optimization written by Society for Industrial and Applied Mathematics and published by . This book was released on 2006 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Adaptive Markov Control Processes written by Onesimo Hernandez-Lerma and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e. , CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained,in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided.
Download or read book Basics of Applied Stochastic Processes written by Richard Serfozo and published by Springer Science & Business Media. This book was released on 2009-01-24 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.
Download or read book Current Index to Statistics Applications Methods and Theory written by and published by . This book was released on 1998 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Current Index to Statistics (CIS) is a bibliographic index of publications in statistics, probability, and related fields.
Download or read book Fundamentals of Applied Probability and Random Processes written by Oliver Ibe and published by Academic Press. This book was released on 2014-06-13 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. - Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings - Expands readers' understanding of disruptive statistics in a new chapter (chapter 8) - Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. - Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).
Download or read book An Introduction to Stochastic Modeling written by Howard M. Taylor and published by Academic Press. This book was released on 2014-05-10 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Download or read book Operations Research 91 written by Peter Gritzmann and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume comprises a collection of 172 extented abstracts of talks presented at the 16th Symposium on Operations Rese- arch held at the University of Trier in September 1991. It is designated to serve as a quickly published documentation of the scientific activities of the conference. Subjects and areas touched upon include theory, modelling and computational methods in optimization, combinatorial op- timization and discrete mathematics, combinatorial problems in VLSI, scientific computing, stochastic and dynamic opti- mization, queuing, scheduling, stochastics and econometrics, mathematical economics and game theory, utility, risk, insu- rance, financial engineering, computer science in business and economics, knowledge engineering and production and ma- nufacturing.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Technical System Maintenance written by Sylwia Werbińska-Wojciechowska and published by Springer. This book was released on 2019-01-09 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed introduction to maintenance policies and the current and future research in these fields, highlighting mathematical formulation and optimization techniques. It comprehensively describes the state of art in maintenance modelling and optimization for single- and multi-unit technical systems, and also investigates the problem of the estimation process of delay-time parameters and how this affects system performance. The book discusses delay-time modelling for multi-unit technical systems in various reliability structures, examining the optimum maintenance policies both analytically and practically, focusing on a delay-time modelling technique that has been employed by researchers in the field of maintenance engineering to model inspection intervals. It organizes the existing work into several fields, based mainly on the classification of single- and multi-unit models and assesses the applicability of the reviewed works and maintenance models. Lastly, it identifies potential future research directions and suggests research agendas. This book is a valuable resource for maintenance engineers, reliability specialists, and researchers, as it demonstrates the latest developments in maintenance, inspection and delay-time-based maintenance modelling issues. It is also of interest to graduate and senior undergraduate students, as it introduces current theory and practice in maintenance modelling issues, especially in the field of delay-time modelling.
Download or read book Non homogeneous Random Walks written by Mikhail Menshikov and published by Cambridge University Press. This book was released on 2016-12-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.