Download or read book Foundational Theories of Classical and Constructive Mathematics written by Giovanni Sommaruga and published by Springer Science & Business Media. This book was released on 2011-03-24 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book "Foundational Theories of Classical and Constructive Mathematics" is a book on the classical topic of foundations of mathematics. Its originality resides mainly in its treating at the same time foundations of classical and foundations of constructive mathematics. This confrontation of two kinds of foundations contributes to answering questions such as: Are foundations/foundational theories of classical mathematics of a different nature compared to those of constructive mathematics? Do they play the same role for the resp. mathematics? Are there connections between the two kinds of foundational theories? etc. The confrontation and comparison is often implicit and sometimes explicit. Its great advantage is to extend the traditional discussion of the foundations of mathematics and to render it at the same time more subtle and more differentiated. Another important aspect of the book is that some of its contributions are of a more philosophical, others of a more technical nature. This double face is emphasized, since foundations of mathematics is an eminent topic in the philosophy of mathematics: hence both sides of this discipline ought to be and are being paid due to.
Download or read book The Foundational Debate written by Werner DePauli-Schimanovich and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Constructibility and complexity play central roles in recent research in computer science, mathematics and physics. For example, scientists are investigating the complexity of computer programs, constructive proofs in mathematics and the randomness of physical processes. But there are different approaches to the explication of these concepts. This volume presents important research on the state of this discussion, especially as it refers to quantum mechanics. This `foundational debate' in computer science, mathematics and physics was already fully developed in 1930 in the Vienna Circle. A special section is devoted to its real founder Hans Hahn, referring to his contribution to the history and philosophy of science. The documentation section presents articles on the early Philipp Frank and on the Vienna Circle in exile. Reviews cover important recent literature on logical empiricism and related topics.
Download or read book Sets for Mathematics written by F. William Lawvere and published by Cambridge University Press. This book was released on 2003-01-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, first published in 2003, categorical algebra is used to build a foundation for the study of geometry, analysis, and algebra.
Download or read book Homotopy Type Theory Univalent Foundations of Mathematics written by and published by Univalent Foundations. This book was released on with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Constructivism in Mathematics Vol 1 written by A.S. Troelstra and published by Elsevier Science. This book was released on 1988-07-15 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: These two volumes cover the principal approaches to constructivism in mathematics. They present a thorough, up-to-date introduction to the metamathematics of constructive mathematics, paying special attention to Intuitionism, Markov's constructivism and Martin-Lof's type theory with its operational semantics. A detailed exposition of the basic features of constructive mathematics, with illustrations from analysis, algebra and topology, is provided, with due attention to the metamathematical aspects. Volume 1 is a self-contained introduction to the practice and foundations of constructivism, and does not require specialized knowledge beyond basic mathematical logic. Volume 2 contains mainly advanced topics of a proof-theoretical and semantical nature.
Download or read book Reflections on the Foundations of Mathematics written by Stefania Centrone and published by Springer Nature. This book was released on 2019-11-11 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited work presents contemporary mathematical practice in the foundational mathematical theories, in particular set theory and the univalent foundations. It shares the work of significant scholars across the disciplines of mathematics, philosophy and computer science. Readers will discover systematic thought on criteria for a suitable foundation in mathematics and philosophical reflections around the mathematical perspectives. The volume is divided into three sections, the first two of which focus on the two most prominent candidate theories for a foundation of mathematics. Readers may trace current research in set theory, which has widely been assumed to serve as a framework for foundational issues, as well as new material elaborating on the univalent foundations, considering an approach based on homotopy type theory (HoTT). The third section then builds on this and is centred on philosophical questions connected to the foundations of mathematics. Here, the authors contribute to discussions on foundational criteria with more general thoughts on the foundations of mathematics which are not connected to particular theories. This book shares the work of some of the most important scholars in the fields of set theory (S. Friedman), non-classical logic (G. Priest) and the philosophy of mathematics (P. Maddy). The reader will become aware of the advantages of each theory and objections to it as a foundation, following the latest and best work across the disciplines and it is therefore a valuable read for anyone working on the foundations of mathematics or in the philosophy of mathematics.
Download or read book Toposes and Local Set Theories written by John L. Bell and published by Courier Corporation. This book was released on 2008-01-01 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces topos theory, a development in category theory that unites important but seemingly diverse notions from algebraic geometry, set theory, and intuitionistic logic. Topics include local set theories, fundamental properties of toposes, sheaves, local-valued sets, and natural and real numbers in local set theories. 1988 edition.
Download or read book Commutative Algebra Constructive Methods written by Henri Lombardi and published by Springer. This book was released on 2015-07-22 with total page 1033 pages. Available in PDF, EPUB and Kindle. Book excerpt: Translated from the popular French edition, this book offers a detailed introduction to various basic concepts, methods, principles, and results of commutative algebra. It takes a constructive viewpoint in commutative algebra and studies algorithmic approaches alongside several abstract classical theories. Indeed, it revisits these traditional topics with a new and simplifying manner, making the subject both accessible and innovative. The algorithmic aspects of such naturally abstract topics as Galois theory, Dedekind rings, Prüfer rings, finitely generated projective modules, dimension theory of commutative rings, and others in the current treatise, are all analysed in the spirit of the great developers of constructive algebra in the nineteenth century. This updated and revised edition contains over 350 well-arranged exercises, together with their helpful hints for solution. A basic knowledge of linear algebra, group theory, elementary number theory as well as the fundamentals of ring and module theory is required. Commutative Algebra: Constructive Methods will be useful for graduate students, and also researchers, instructors and theoretical computer scientists.
Download or read book Kurt G del and the Foundations of Mathematics written by Matthias Baaz and published by Cambridge University Press. This book was released on 2011-06-06 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume commemorates the life, work and foundational views of Kurt Gödel (1906–78), most famous for his hallmark works on the completeness of first-order logic, the incompleteness of number theory, and the consistency - with the other widely accepted axioms of set theory - of the axiom of choice and of the generalized continuum hypothesis. It explores current research, advances and ideas for future directions not only in the foundations of mathematics and logic, but also in the fields of computer science, artificial intelligence, physics, cosmology, philosophy, theology and the history of science. The discussion is supplemented by personal reflections from several scholars who knew Gödel personally, providing some interesting insights into his life. By putting his ideas and life's work into the context of current thinking and perceptions, this book will extend the impact of Gödel's fundamental work in mathematics, logic, philosophy and other disciplines for future generations of researchers.
Download or read book Foundations of Constructive Mathematics written by M.J. Beeson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about some recent work in a subject usually considered part of "logic" and the" foundations of mathematics", but also having close connec tions with philosophy and computer science. Namely, the creation and study of "formal systems for constructive mathematics". The general organization of the book is described in the" User's Manual" which follows this introduction, and the contents of the book are described in more detail in the introductions to Part One, Part Two, Part Three, and Part Four. This introduction has a different purpose; it is intended to provide the reader with a general view of the subject. This requires, to begin with, an elucidation of both the concepts mentioned in the phrase, "formal systems for constructive mathematics". "Con structive mathematics" refers to mathematics in which, when you prove that l a thing exists (having certain desired properties) you show how to find it. Proof by contradiction is the most common way of proving something exists without showing how to find it - one assumes that nothing exists with the desired properties, and derives a contradiction. It was only in the last two decades of the nineteenth century that mathematicians began to exploit this method of proof in ways that nobody had previously done; that was partly made possible by the creation and development of set theory by Georg Cantor and Richard Dedekind.
Download or read book Finite Mathematics as the Foundation of Classical Mathematics and Quantum Theory written by Felix Lev and published by Springer Nature. This book was released on 2020-11-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delves into finite mathematics and its application in physics, particularly quantum theory. It is shown that quantum theory based on finite mathematics is more general than standard quantum theory, whilst finite mathematics is itself more general than standard mathematics.As a consequence, the mathematics describing nature at the most fundamental level involves only a finite number of numbers while the notions of limit, infinite/infinitesimal and continuity are needed only in calculations that describe nature approximately. It is also shown that the concepts of particle and antiparticle are likewise approximate notions, valid only in special situations, and that the electric charge and baryon- and lepton quantum numbers can be only approximately conserved.
Download or read book Lectures on the Philosophy of Mathematics written by Joel David Hamkins and published by MIT Press. This book was released on 2021-03-09 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.
Download or read book Categories for the Working Mathematician written by Saunders Mac Lane and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Download or read book Formal Semantics in Modern Type Theories written by Stergios Chatzikyriakidis and published by John Wiley & Sons. This book was released on 2021-02-17 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies formal semantics in modern type theories (MTTsemantics). Compared with simple type theory, MTTs have much richer type structures and provide powerful means for adequate semantic constructions. This offers a serious alternative to the traditional settheoretical foundation for linguistic semantics and opens up a new avenue for developing formal semantics that is both model-theoretic and proof-theoretic, which was not available before the development of MTTsemantics. This book provides a reader-friendly and precise description of MTTs and offers a comprehensive introduction to MTT-semantics. It develops several case studies, such as adjectival modification and copredication, to exemplify the attractiveness of using MTTs for the study of linguistic meaning. It also examines existing proof assistant technology based on MTT-semantics for the verification of semantic constructions and reasoning in natural language. Several advanced topics are also briefly studied, including dependent event types, an application of dependent typing to event semantics.
Download or read book Foundations Logic Language and Mathematics written by Hugues Leblanc and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: The more traditional approaches to the history and philosophy of science and technology continue as well, and probably will continue as long as there are skillful practitioners such as Carl Hempel, Ernest Nagel, and th~ir students. Finally, there are still other approaches that address some of the technical problems arising when we try to provide an account of belief and of rational choice. - These include efforts to provide logical frameworks within which we can make sense of these notions. This series will attempt to bring together work from all of these approaches to the history and philosophy of science and technology in the belief that each has something to add to our understanding. The volumes of this series have emerged either from lectures given by authors while they served as honorary visiting professors at the City College of New York or from conferences sponsored by that institution. The City College Program in the History and Philosophy of Science and Technology oversees and directs these lectures and conferences with the financial aid of the Association for Philosophy of Science, Psychotheraphy, and Ethics. MARTIN TAMNY RAPHAEL STERN PREFACE The papers in this collection stem largely from the conference 'Foun dations: Logic, Language, and Mathematics' held at the Graduate Center of the City University of New York on 14-15 November 1980.
Download or read book Hilbert s Programs and Beyond written by Wilfried Sieg and published by Oxford University Press. This book was released on 2013-03-07 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: David Hilbert was one of the great mathematicians who expounded the centrality of their subject in human thought. In this collection of essays, Wilfried Sieg frames Hilbert's foundational work, from 1890 to 1939, in a comprehensive way and integrates it with modern proof theoretic investigations.
Download or read book The Axiom of Choice written by John Lane Bell and published by Studies in Logic. Mathematical. This book was released on 2009 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of the development of the Axiom of Choice since its introduction by Zermelo at the beginning of the last century. The book surveys the Axiom of Choice from three perspectives. The first, or mathematical perspective, is that of the "working mathematician". This perspective brings into view the manifold applications of the Axiom of Choice-usually in the guise of Zorn s Lemma- in a great variety of areas of mathematics. The second, foundational, perspective is that of the logician or constructive mathematician concerned with the foundational status of the Axiom of Choice. The third, topos-theoretical, perspective is that taken by the mathematician or logician investigating the role of the Axiom of Choice in topos theory. Certain topics-for instance mathematical applications of the Axiom, and its relationship with logic-are discussed in considerable detail. Others-notably the consistency and independence of the Axiom of the usual systems of set theory-are given no more than summary treatment, the justification here being that these topics have been given full expositions elsewhere. It is hoped that the book will be of interest to logicians and mathematicians, both professional and prospective.