EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Foundations of the Theory of Groupoids and Groups

Download or read book Foundations of the Theory of Groupoids and Groups written by Otakar Borůvka and published by John Wiley & Sons. This book was released on 1976 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topology and Groupoids

Download or read book Topology and Groupoids written by Ronald Brown and published by Booksurge Llc. This book was released on 2006 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation. The book is intended as a text for a two-semester course in topology and algebraic topology at the advanced undergraduate orbeginning graduate level. There are over 500 exercises, 114 figures, numerous diagrams. The general direction of the book is towardhomotopy theory with a geometric point of view. This book would providea more than adequate background for a standard algebraic topology coursethat begins with homology theory. For more information seewww.bangor.ac.uk/r.brown/topgpds.htmlThis version dated April 19, 2006, has a number of corrections made.

Book An Introduction to Groups  Groupoids and Their Representations

Download or read book An Introduction to Groups Groupoids and Their Representations written by Alberto Ibort and published by CRC Press. This book was released on 2019-10-28 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the theory of groupoids and their representations encompassing the standard theory of groups. Using a categorical language, developed from simple examples, the theory of finite groupoids is shown to knit neatly with that of groups and their structure as well as that of their representations is described. The book comprises numerous examples and applications, including well-known games and puzzles, databases and physics applications. Key concepts have been presented using only basic notions so that it can be used both by students and researchers interested in the subject. Category theory is the natural language that is being used to develop the theory of groupoids. However, categorical presentations of mathematical subjects tend to become highly abstract very fast and out of reach of many potential users. To avoid this, foundations of the theory, starting with simple examples, have been developed and used to study the structure of finite groups and groupoids. The appropriate language and notions from category theory have been developed for students of mathematics and theoretical physics. The book presents the theory on the same level as the ordinary and elementary theories of finite groups and their representations, and provides a unified picture of the same. The structure of the algebra of finite groupoids is analysed, along with the classical theory of characters of their representations. Unnecessary complications in the formal presentation of the subject are avoided. The book offers an introduction to the language of category theory in the concrete setting of finite sets. It also shows how this perspective provides a common ground for various problems and applications, ranging from combinatorics, the topology of graphs, structure of databases and quantum physics.

Book Homotopy Type Theory  Univalent Foundations of Mathematics

Download or read book Homotopy Type Theory Univalent Foundations of Mathematics written by and published by Univalent Foundations. This book was released on with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonabelian Algebraic Topology

Download or read book Nonabelian Algebraic Topology written by Ronald Brown and published by JP Medical Ltd. This book was released on 2011 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is that the use of filtered spaces rather than just topological spaces allows the development of basic algebraic topology in terms of higher homotopy groupoids; these algebraic structures better reflect the geometry of subdivision and composition than those commonly in use. Exploration of these uses of higher dimensional versions of groupoids has been largely the work of the first two authors since the mid 1960s. The structure of the book is intended to make it useful to a wide class of students and researchers for learning and evaluating these methods, primarily in algebraic topology but also in higher category theory and its applications in analogous areas of mathematics, physics, and computer science. Part I explains the intuitions and theory in dimensions 1 and 2, with many figures and diagrams, and a detailed account of the theory of crossed modules. Part II develops the applications of crossed complexes. The engine driving these applications is the work of Part III on cubical $\omega$-groupoids, their relations to crossed complexes, and their homotopically defined examples for filtered spaces. Part III also includes a chapter suggesting further directions and problems, and three appendices give accounts of some relevant aspects of category theory. Endnotes for each chapter give further history and references.

Book Foundations of Differentiable Manifolds and Lie Groups

Download or read book Foundations of Differentiable Manifolds and Lie Groups written by Frank W. Warner and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

Book Foundations of Quantum Theory

Download or read book Foundations of Quantum Theory written by Klaas Landsman and published by Springer. This book was released on 2017-05-11 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.

Book Algebraic Homotopy

    Book Details:
  • Author : Hans J. Baues
  • Publisher : Cambridge University Press
  • Release : 1989-02-16
  • ISBN : 0521333768
  • Pages : 490 pages

Download or read book Algebraic Homotopy written by Hans J. Baues and published by Cambridge University Press. This book was released on 1989-02-16 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a general outlook on homotopy theory; fundamental concepts, such as homotopy groups and spectral sequences, are developed from a few axioms and are thus available in a broad variety of contexts. Many examples and applications in topology and algebra are discussed, including an introduction to rational homotopy theory in terms of both differential Lie algebras and De Rham algebras. The author describes powerful tools for homotopy classification problems, particularly for the classification of homotopy types and for the computation of the group homotopy equivalences. Applications and examples of such computations are given, including when the fundamental group is non-trivial. Moreover, the deep connection between the homotopy classification problems and the cohomology theory of small categories is demonstrated. The prerequisites of the book are few: elementary topology and algebra. Consequently, this account will be valuable for non-specialists and experts alike. It is an important supplement to the standard presentations of algebraic topology, homotopy theory, category theory and homological algebra.

Book A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences

Download or read book A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences written by K. Glazek and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a short guide to the extensive literature concerning semir ings along with a complete bibliography. The literature has been created over many years, in variety of languages, by authors representing different schools of mathematics and working in various related fields. In many instances the terminology used is not universal, which further compounds the difficulty of locating pertinent sources even in this age of the Internet and electronic dis semination of research results. So far there has been no single reference that could guide the interested scholar or student to the relevant publications. This book is an attempt to fill this gap. My interest in the theory of semirings began in the early sixties, when to gether with Bogdan W ~glorz I tried to investigate some algebraic aspects of compactifications of topological spaces, semirings of semicontinuous functions, and the general ideal theory for special semirings. (Unfortunately, local alge braists in Poland told me at that time that there was nothing interesting in investigating semiring theory because ring theory was still being developed). However, some time later we became aware of some similar investigations hav ing already been done. The theory of semirings has remained "my first love" ever since, and I have been interested in the results in this field that have been appearing in literature (even though I have not been active in this area myself).

Book Nilpotence and Periodicity in Stable Homotopy Theory

Download or read book Nilpotence and Periodicity in Stable Homotopy Theory written by Douglas C. Ravenel and published by Princeton University Press. This book was released on 1992-11-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.

Book Algebraic Groups

    Book Details:
  • Author : J. S. Milne
  • Publisher : Cambridge University Press
  • Release : 2017-09-21
  • ISBN : 1107167485
  • Pages : 665 pages

Download or read book Algebraic Groups written by J. S. Milne and published by Cambridge University Press. This book was released on 2017-09-21 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive introduction to the theory of algebraic group schemes over fields, based on modern algebraic geometry, with few prerequisites.

Book Foundation of the Theory of Groupoids and Groups

Download or read book Foundation of the Theory of Groupoids and Groups written by Otakar Borúvka and published by Springer. This book was released on 1976-01-01 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Unitary Representation Theory of Exponential Lie Groups

Download or read book Unitary Representation Theory of Exponential Lie Groups written by Horst Leptin and published by Walter de Gruyter. This book was released on 2011-06-01 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

Book The Algebraic Theory of Semigroups  Volume II

Download or read book The Algebraic Theory of Semigroups Volume II written by Alfred Hoblitzelle Clifford and published by American Mathematical Soc.. This book was released on 1961 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Categories for the Working Philosopher

Download or read book Categories for the Working Philosopher written by Elaine M. Landry and published by Oxford University Press. This book was released on 2017 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first volume on category theory for a broad philosophical readership. It is designed to show the interest and significance of category theory for a range of philosophical interests: mathematics, proof theory, computation, cognition, scientific modelling, physics, ontology, the structure of the world. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, in an accessible waythat builds on the concepts that are already familiar to philosophers working in these areas.

Book Combinatorics  86

    Book Details:
  • Author : M. Marchi
  • Publisher : Elsevier
  • Release : 2011-09-22
  • ISBN : 0080867774
  • Pages : 519 pages

Download or read book Combinatorics 86 written by M. Marchi and published by Elsevier. This book was released on 2011-09-22 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in all aspects of combinatorial and incidence geometry are covered in this volume, including their links with the foundations of geometry, graph theory and algebraic structures, and the applications to coding theory and computer science.Topics covered include Galois geometries, blocking sets, affine and projective planes, incidence structures and their automorphism groups. Matroids, graph theory and designs are also treated, along with weak algebraic structures such as near-rings, near-fields, quasi-groups, loops, hypergroups etc., and permutation sets and groups.The vitality of combinatorics today lies in its important interactions with computer science. The problems which arise are of a varied nature and suitable techniques to deal with them have to be devised for each situation; one of the special features of combinatorics is the often sporadic nature of solutions, stemming from its links with number theory. The branches of combinatorics are many and various, and all of them are represented in the 56 papers in this volume.

Book Category Theory in Context

Download or read book Category Theory in Context written by Emily Riehl and published by Courier Dover Publications. This book was released on 2017-03-09 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.