EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Catalytic Reaction Synthesis for the Partial Oxidation of Methane to Formaldehyde

Download or read book Catalytic Reaction Synthesis for the Partial Oxidation of Methane to Formaldehyde written by Maria-Guadalupe Cardenas-Galindo and published by . This book was released on 1993 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Methane Oxidation Over Dual Redox Catalysts

Download or read book Methane Oxidation Over Dual Redox Catalysts written by and published by . This book was released on 1992 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C[sub 2] hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C[sub 2] hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe[sup III] or Sn[sup IV], was found to be essential for the selectivity switch from C[sub 2] coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu[sup II](ion exchanged) Fe[sup III](framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb, Bi, Sn)/SrO/La[sub 2]O[sub 3] has been discovered for potentially commercially attractive process for the conversion of methane to C[sub 2] hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C[sub 2] hydrocarbon products to formaldehyde in methane oxidations over Cu, Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

Book Investigation of the Partial Oxidation of Methane to Formaldehyde Over Vanadium Oxide Catalysts Supported on Silica

Download or read book Investigation of the Partial Oxidation of Methane to Formaldehyde Over Vanadium Oxide Catalysts Supported on Silica written by Benoit J. Kartheuser and published by . This book was released on 1993 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Methane Oxidation Over Dual Redox Catalysts  Final Report

Download or read book Methane Oxidation Over Dual Redox Catalysts Final Report written by and published by . This book was released on 1992 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C2 hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C2 hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe{sup III} or Sn{sup IV}, was found to be essential for the selectivity switch from C2 coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu{sup II}(ion exchanged) Fe{sup III}(framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb, Bi, Sn)/SrO/La2O3 has been discovered for potentially commercially attractive process for the conversion of methane to C2 hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C2 hydrocarbon products to formaldehyde in methane oxidations over Cu, Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

Book The Partial Oxidation of Methane to Formaldehyde Over Molybdenum Oxide based Catalysts

Download or read book The Partial Oxidation of Methane to Formaldehyde Over Molybdenum Oxide based Catalysts written by Marianne Rose Smith and published by . This book was released on 1992 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Natural Gas Conversion VI

Download or read book Natural Gas Conversion VI written by T.H. Fleisch and published by Elsevier. This book was released on 2001-06-01 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Sumposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings.The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volum. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings.

Book The Catalytic Conversion of Methane to Methanol and Formaldehyde Under Mild Conditions

Download or read book The Catalytic Conversion of Methane to Methanol and Formaldehyde Under Mild Conditions written by Remegia Mmalewane Modibedi and published by . This book was released on 2000 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study a catalyst that works at low temperature and atmospheric pressure for the oxidation of methane to methanol and formaldehyde was developed. Catalyst preparation was based on the fact that the higher activity and selectivity to the desired products obtained over supported catalysts, compared to bulk oxides, can be attributed to the formation of easily reducible supported metal oxide phases.

Book Partial Oxidation of Methanol to Formaldehyde Over Sb Mo Oxide Catalysts

Download or read book Partial Oxidation of Methanol to Formaldehyde Over Sb Mo Oxide Catalysts written by Rafael Alfredo Díaz Real and published by . This book was released on 1991 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The kinetics of the vapor phase air oxidation of methanol to formaldehyde over molybdenum oxide catalysts, antimony oxide catalyst, and their mixtures (both supported and unsupported), at atmospheric pressure and different operating conditions, have been studied in a fixed-bed integral reactor heated by a fluidized sand bath. The effect of various process variables, namely the process temperature (T), the ratio of catalysts to feed flow rate or space time (W/F), and the ratio of methanol fed to air (R), on conversion and yield have been determined. A screening study at varying operating conditions was performed to determine the optimum composition of a Sb$\sb2\rm O\sb4$-MoO$\sb3$ mixture. On the basis of this study a catalyst containing 67% $\rm Sb\sb2O\sb4$-33% MoO$\sb3$ was selected for the detailed kinetic study of oxidation of methanol to formaldehyde. The operating conditions studied were as follows: temperature in the range 623 to 698 K, space times from 5 to 50 $\rm g\sb{cat}/mol\sb{CH\sb3OH}h\sp{-1},$ and methanol to air ratios in the range 0.04 to 0.10 mol$\rm\sb{CH\sb3OH}h\sp{-1}/mol\sb{air}h\sp{-1}.$ This catalyst proved to be highly active and selective to formaldehyde formation. Yields up to $\sim$100% were obtained. Best operating conditions found were obtained at a space time of 27.5 for a methanol/air ratio of 0.06 and a temperature of 698 K. The rate equation for the oxidation of methanol to formaldehyde was derived on the basis of a two-stage redox mechanism$$\eqalign{\rm CH\sb3OH\sb{(g)} + S\sb{ox}\ {\buildrel{k\sb1}\over{\to}}\ &\rm HCHO\sb{(g)} + H\sb2O\sb{(g)} + S\sb{red}\cr\rm O\sb{2\sb{(g)}} + &\rm S\sb{red}\ {\buildrel{k\sb2}\over{\to}}\ S\sb{ox}\cr}$$where S$\rm\sb{ox}$ represents an active site of lattice oxygen and S$\rm\sb{red}$ represents a reduced site of lattice oxygen. The rate equation for the temperature of 648 to 698 K which correlated the data was$$\rm r = {k\sb1P\sb{M}\over 1+{k\sb1P\sb{M}\over 2k\sb2P\sb{O\sb2}}}$$where k$\sb1$ and k$\sb2$ are the temperature dependent rate constants of steps one and two. The equations relating k$\sb1$ and k$\sb2$ with temperature were$$\eqalign{&\rm ln\ k\sb1 = -6.4039-{6.9153\times10\sp3\over T}\cr&\rm ln\ k\sb2 = -3.0154 + {1.8809\times10\sp3\over T}\cr}$$ Several spectroscopic and analytical techniques, viz, electron spin resonance (ESR), x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and adsorption studies were used to characterize the catalysts. The surface are of the catalyst used in the kinetic study was 6.1 m$\sp2$/g as determined by the BET method. A preliminary study of the Sb-Mo oxide mixture (load of $\sim$5 wt%) supported on Y zeolite was also carried out. Maximum yield obtained was comparable to that obtained with pure MoO$\sb3.$ A new catalyst has been developed that gave nearly 100% conversion and 100% yield. The industrial potential of this catalyst is very promising.

Book Selective Methane Oxidation Over Promoted Oxide Catalysts  Quarterly Technical Progress Report  September 8  1992  November 30  1992

Download or read book Selective Methane Oxidation Over Promoted Oxide Catalysts Quarterly Technical Progress Report September 8 1992 November 30 1992 written by and published by . This book was released on 1993 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: Support effects on catalytic reactions, especially of highly exothermic oxidation reactions, can be very significant. Since we had shown that a MoO3/SiO2 catalyst, especially when used in a double bed configuration with a Sr/La2O3 catalyst, can selectively oxidize methane to formaldehyde, the role of the SiO2 support was investigated. Therefore, partial oxidation of methane by oxygen to form formaldehyde, carbon oxides, and C2 products (ethane and ethene) has been studied over silica catalyst supports (fumed Cabosil and Grace 636 silica gel) in the 630-780°C temperature range under ambient pressure. When relatively high gas hourly space velocities (GHSV) were utilized, the silica catalysts exhibit high space time yields (at low conversions) for methane partial oxidation to formaldehyde, and the C2 hydrocarbons were found to be parallel products with formaldehyde. In general, the selectivities toward CO were high while those toward CO2 were low. Based on the present results obtained by a double catalyst bed experiment, the observations of product composition dependence on the variation of GHSV (i.e. gas residence time), and differences in apparent activation energies of formation of C2H6, and CH2O, a reaction mechanism is proposed for the activation of methane over the silica surface. This mechanism can explain the observed product distribution patterns (specifically the parallel formation of formaldehyde and C2 hydrocarbons).

Book Methane Conversion by Oxidative Processes

Download or read book Methane Conversion by Oxidative Processes written by Wolf and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reasonable case could be made that the scientific interest in catalytic oxidation was the basis for the recognition of the phenomenon of catalysis. Davy, in his attempt in 1817 to understand the science associated with the safety lamp he had invented a few years earlier, undertook a series of studies that led him to make the observation that a jet of gas, primarily methane, would cause a platinum wire to continue to glow even though the flame was extinguished and there was no visible flame. Dobereiner reported in 1823 the results of a similar investigation and observed that spongy platina would cause the ignition of a stream of hydrogen in air. Based on this observation Dobereiner invented the first lighter. His lighter employed hydrogen (generated from zinc and sulfuric acid) which passed over finely divided platinum and which ignited the gas. Thousands of these lighters were used over a number of years. Dobereiner refused to file a patent for his lighter, commenting that "I love science more than money." Davy thought the action of platinum was the result of heat while Dobereiner believed the ~ffect ~as a manifestation of electricity. Faraday became interested in the subject and published a paper on it in 1834; he concluded that the cause for this reaction was similar to other reactions.

Book Oxygen in Catalysis

    Book Details:
  • Author : Adam Bielanski
  • Publisher : CRC Press
  • Release : 1990-11-29
  • ISBN : 1482293285
  • Pages : 489 pages

Download or read book Oxygen in Catalysis written by Adam Bielanski and published by CRC Press. This book was released on 1990-11-29 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: A description of catalytic systems commonly used as model systems in the laboratory and as industrial catalysts in large-scale operations, and a discussion of the mechanisms operating in these reactions. Attempts to describe the elementary steps by quantum chemical methods are also shown, as are rec

Book Partial Oxidation of Methane Over Halogen Modified Palladium Catalyst

Download or read book Partial Oxidation of Methane Over Halogen Modified Palladium Catalyst written by Mahendra Kumar Dosi and published by . This book was released on 1978 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Partial Oxidation of Methane and Ethane Over Metal Oxide Catalysts

Download or read book Partial Oxidation of Methane and Ethane Over Metal Oxide Catalysts written by Dingjun Wang and published by . This book was released on 1995 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis Gas Formation by Partial Oxidation of Methane Over Metal Catalyst

Download or read book Synthesis Gas Formation by Partial Oxidation of Methane Over Metal Catalyst written by J. Nakamura and published by . This book was released on 1991 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Natural Gas Conversion V

Download or read book Natural Gas Conversion V written by A. Parmaliana and published by Elsevier. This book was released on 1998-09-17 with total page 1005 pages. Available in PDF, EPUB and Kindle. Book excerpt: On January 1988, the ascertained and economically accessible reserves of Natural Gas (NG) amounted to over 144,000 billion cubic meters worldwide, corresponding to 124 billion tons of oil equivalents (comparable with the liquid oil reserves, which are estimated to be 138 billion TOE). It is hypothesized that the volume of NG reserve will continue to grow at the same rate of the last decade. Forecasts on production indicate a potential increase from about 2,000 billion cubic meters in 1990 to not more than 3,300 billion cubic meters in 2010, even in a high economic development scenario. NG consumption represents only one half of oil: 1.9 billion TOE/y as compared to 3.5 of oil. Consequently, in the future gas will exceed oil as a carbon atom source. In the future the potential for getting energetic vectors or petrochemicals from NG will continue to grow.The topics covered in Natural Gas Conversion V reflect the large global R&D effort to look for new and economic ways of NG exploitation. These range from the direct conversion of methane and light paraffins to the indirect conversion through synthesis gas to fuels and chemicals. Particularly underlined and visible are the technologies already commercially viable.These proceedings prove that mature and technologically feasible processes for natural gas conversion are already available and that new and improved catalytic approaches are currently developing, the validity and feasibility of which will soon be documented. This is an exciting area of modern catalysis, which will certainly open novel and rewarding perspectives for the chemical, energy and petrochemical industries.