Download or read book Football Analytics with Python R written by Eric A. Eager and published by "O'Reilly Media, Inc.". This book was released on 2023-08-15 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Baseball is not the only sport to use "moneyball." American football fans, teams, and gamblers are increasingly using data to gain an edge against the competition. Professional and college teams use data to help select players and identify team needs. Fans use data to guide fantasy team picks and strategies. Sports bettors and fantasy football players are using data to help inform decision making. This concise book provides a clear introduction to using statistical models to analyze football data. Whether your goal is to produce a winning team, dominate your fantasy football league, qualify for an entry-level football analyst position, or simply learn R and Python using fun example cases, this book is your starting place. You'll learn how to: Apply basic statistical concepts to football datasets Describe football data with quantitative methods Create efficient workflows that offer reproducible results Use data science skills such as web scraping, manipulating data, and plotting data Implement statistical models for football data Link data summaries and model outputs to create reports or presentations using tools such as R Markdown and R Shiny And more
Download or read book Data Analytics in Football written by Daniel Memmert and published by Routledge. This book was released on 2018-05-30 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics in Football provides students, researchers and coaches with a firm grounding in the principles of modern performance analysis. It offers an insight into the use of positional data, exploring how it can be collected, modelled, analysed and interpreted. Introducing cutting-edge methods, the book challenges long-held assumptions and encourages a new way of thinking about football analysis. Based on data collected from the German Bundesliga and the UEFA Champions League, the book seeks to define the role of positional data in football match analysis by exploring topics such as: What is positional data analysis and how did it emerge from conventional match analysis? How can positional data be collected and which technologies can be used? What are the benefits of a data-driven approach to decision making in football? What Key Performance Indicators based on positional data should be used? How can traditional match analysis be complemented by using positional data and advanced KPIs? How can these new methods evolve in the future? Accessibly written, packed full of examples from elite football and supplemented with expert interviews (Ralf Rangnick, Urs Siegenthaler and others), Data Analytics in Football is a thought-provoking, rigorously evidence-based guide to the use of data analytics in football performance analysis. As such, it is a vital resource for any student, researcher or coach interested in performance analysis and skill acquisition, or anyone interested in football more generally.
Download or read book Mathletics written by Wayne L. Winston and published by Princeton University Press. This book was released on 2012-03-18 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: How math can be used to improve performance and predict outcomes in professional sports Mathletics is a remarkably entertaining book that shows readers how to use simple mathematics to analyze a range of statistical and probability-related questions in professional baseball, basketball, and football, and in sports gambling. How does professional baseball evaluate hitters? Is a singles hitter like Wade Boggs more valuable than a power hitter like David Ortiz? Should NFL teams pass or run more often on first downs? Could professional basketball have used statistics to expose the crooked referee Tim Donaghy? Does money buy performance in professional sports? In Mathletics, Wayne Winston describes the mathematical methods that top coaches and managers use to evaluate players and improve team performance, and gives math enthusiasts the practical tools they need to enhance their understanding and enjoyment of their favorite sports—and maybe even gain the outside edge to winning bets. Mathletics blends fun math problems with sports stories of actual games, teams, and players, along with personal anecdotes from Winston's work as a sports consultant. Winston uses easy-to-read tables and illustrations to illuminate the techniques and ideas he presents, and all the necessary math concepts—such as arithmetic, basic statistics and probability, and Monte Carlo simulations—are fully explained in the examples. After reading Mathletics, you will understand why baseball teams should almost never bunt, why football overtime systems are unfair, why points, rebounds, and assists aren't enough to determine who's the NBA's best player—and much, much more. In a new epilogue, Winston discusses the stats and numerical analysis behind some recent sporting events, such as how the Dallas Mavericks used analytics to become the 2011 NBA champions.
Download or read book Python and R for the Modern Data Scientist written by Rick J. Scavetta and published by "O'Reilly Media, Inc.". This book was released on 2021-06-22 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. This book guides data scientists from the Python and R communities along the path to becoming bilingual. By recognizing the strengths of both languages, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Rick Scavetta and Boyan Angelov explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. You'll learn how to use Python and R together in real-world settings and broaden your job opportunities as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a case study that demonstrates ways to use these languages together
Download or read book Football Analytics with Python R written by Eric A. Eager and published by "O'Reilly Media, Inc.". This book was released on 2023-08-15 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Baseball is not the only sport to use "moneyball." American football fans, teams, and gamblers are increasingly using data to gain an edge against the competition. Professional and college teams use data to help select players and identify team needs. Fans use data to guide fantasy team picks and strategies. Sports bettors and fantasy football players are using data to help inform decision making. This concise book provides a clear introduction to using statistical models to analyze football data. Whether your goal is to produce a winning team, dominate your fantasy football league, qualify for an entry-level football analyst position, or simply learn R and Python using fun example cases, this book is your starting place. You'll learn how to: Apply basic statistical concepts to football datasets Describe football data with quantitative methods Create efficient workflows that offer reproducible results Use data science skills such as web scraping, manipulating data, and plotting data Implement statistical models for football data Link data summaries and model outputs to create reports or presentations using tools such as R Markdown and R Shiny And more
Download or read book Sports Analytics and Data Science written by Thomas W. Miller and published by FT Press. This book was released on 2015-11-18 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. This up-to-the-minute reference will help you master all three facets of sports analytics — and use it to win! Sports Analytics and Data Science is the most accessible and practical guide to sports analytics for everyone who cares about winning and everyone who is interested in data science. You’ll discover how successful sports analytics blends business and sports savvy, modern information technology, and sophisticated modeling techniques. You’ll master the discipline through realistic sports vignettes and intuitive data visualizations–not complex math. Every chapter focuses on one key sports analytics application. Miller guides you through assessing players and teams, predicting scores and making game-day decisions, crafting brands and marketing messages, increasing revenue and profitability, and much more. Step by step, you’ll learn how analysts transform raw data and analytical models into wins: both on the field and in any sports business.
Download or read book Behavioral Data Analysis with R and Python written by Florent Buisson and published by "O'Reilly Media, Inc.". This book was released on 2021-06-15 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harness the full power of the behavioral data in your company by learning tools specifically designed for behavioral data analysis. Common data science algorithms and predictive analytics tools treat customer behavioral data, such as clicks on a website or purchases in a supermarket, the same as any other data. Instead, this practical guide introduces powerful methods specifically tailored for behavioral data analysis. Advanced experimental design helps you get the most out of your A/B tests, while causal diagrams allow you to tease out the causes of behaviors even when you can't run experiments. Written in an accessible style for data scientists, business analysts, and behavioral scientists, thispractical book provides complete examples and exercises in R and Python to help you gain more insight from your data--immediately. Understand the specifics of behavioral data Explore the differences between measurement and prediction Learn how to clean and prepare behavioral data Design and analyze experiments to drive optimal business decisions Use behavioral data to understand and measure cause and effect Segment customers in a transparent and insightful way
Download or read book Sports Analytics written by Benjamin C. Alamar and published by Columbia University Press. This book was released on 2024-05-28 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data and analytics have the potential to provide sports organizations with a competitive advantage both on and off the field. Yet even as the use of analytics in sports has become commonplace, teams regularly find themselves making big investments without significant payoff. This book is a practical, nontechnical guide to incorporating sports data into decision making, giving leaders the knowledge they need to maximize their organization’s investment in analytics. Benjamin C. Alamar—a leading expert who has built high-performing analytics groups—surveys the current state of the use of data in sports, including both specifics around the tools and how to deploy them most effectively. Sports Analytics offers a clear, easily digestible overview of data management, statistical models, and information systems and a detailed understanding of their vast possibilities. It walks readers through the essentials of understanding the value of different types of data and strategies for building and managing an analytics team. Throughout, Alamar illustrates the value of analytics with real-world examples and case studies from both the sports and business sides. Sports Analytics has guided a range of sports professionals to success since its original publication in 2013. This second edition adds examples and strategies that focus on using data on the business side of a sports organization, provides concrete strategies for incorporating different types of data into decision making, and updates all discussions for the rapid technological developments of the last decade.
Download or read book Soccer Analytics written by Ian Franks and published by Meyer & Meyer Sport. This book was released on 2016-08-29 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Match analysis in soccer has become more and more important in recent years. Nowadays, no professional soccer club plays a single match without having analyzed their own and their opponents’ matches to find the best possible match plan and maximize their success. In this book, Ian M. Franks and Mike Hughes explore soccer analyses and use the results to develop realistic, progressive practices to improve the performance of the individual players and the team. Research from human decision making and motor skill acquisition is directly applied to the coaching process and technical and tactical practices are designed to accommodate these findings. Not only is the players’ behavior during practice and matches analyzed but the coaches’ as well. This helps evaluate different coaching practices to find your ideal coaching style. Any coach reading this book will find help in developing and improving their coaching. Anyone who wishes to delve more into the science of soccer analysis will find ample material as well as a comprehensive bibliography to better understand the science of soccer!
Download or read book Basketball Data Science written by Paola Zuccolotto and published by CRC Press. This book was released on 2020-01-03 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using data from one season of NBA games, Basketball Data Science: With Applications in R is the perfect book for anyone interested in learning and applying data analytics in basketball. Whether assessing the spatial performance of an NBA player's shots or doing an analysis of the impact of high pressure game situations on the probability of scoring, this book discusses a variety of case studies and hands-on examples using a custom R package. The codes are supplied so readers can reproduce the analyses themselves or create their own. Assuming a basic statistical knowledge, Basketball Data Science with R is suitable for students, technicians, coaches, data analysts and applied researchers. Features: One of the first books to provide statistical and data mining methods for the growing field of analytics in basketball Presents tools for modelling graphs and figures to visualize the data Includes real world case studies and examples, such as estimations of scoring probability using the Golden State Warriors as a test case Provides the source code and data so readers can do their own analyses on NBA teams and players
Download or read book Learning Social Media Analytics with R written by Raghav Bali and published by Packt Publishing Ltd. This book was released on 2017-05-26 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tap into the realm of social media and unleash the power of analytics for data-driven insights using R About This Book A practical guide written to help leverage the power of the R eco-system to extract, process, analyze, visualize and model social media data Learn about data access, retrieval, cleaning, and curation methods for data originating from various social media platforms. Visualize and analyze data from social media platforms to understand and model complex relationships using various concepts and techniques such as Sentiment Analysis, Topic Modeling, Text Summarization, Recommendation Systems, Social Network Analysis, Classification, and Clustering. Who This Book Is For It is targeted at IT professionals, Data Scientists, Analysts, Developers, Machine Learning Enthusiasts, social media marketers and anyone with a keen interest in data, analytics, and generating insights from social data. Some background experience in R would be helpful, but not necessary, since this book is written keeping in mind, that readers can have varying levels of expertise. What You Will Learn Learn how to tap into data from diverse social media platforms using the R ecosystem Use social media data to formulate and solve real-world problems Analyze user social networks and communities using concepts from graph theory and network analysis Learn to detect opinion and sentiment, extract themes, topics, and trends from unstructured noisy text data from diverse social media channels Understand the art of representing actionable insights with effective visualizations Analyze data from major social media channels such as Twitter, Facebook, Flickr, Foursquare, Github, StackExchange, and so on Learn to leverage popular R packages such as ggplot2, topicmodels, caret, e1071, tm, wordcloud, twittR, Rfacebook, dplyr, reshape2, and many more In Detail The Internet has truly become humongous, especially with the rise of various forms of social media in the last decade, which give users a platform to express themselves and also communicate and collaborate with each other. This book will help the reader to understand the current social media landscape and to learn how analytics can be leveraged to derive insights from it. This data can be analyzed to gain valuable insights into the behavior and engagement of users, organizations, businesses, and brands. It will help readers frame business problems and solve them using social data. The book will also cover several practical real-world use cases on social media using R and its advanced packages to utilize data science methodologies such as sentiment analysis, topic modeling, text summarization, recommendation systems, social network analysis, classification, and clustering. This will enable readers to learn different hands-on approaches to obtain data from diverse social media sources such as Twitter and Facebook. It will also show readers how to establish detailed workflows to process, visualize, and analyze data to transform social data into actionable insights. Style and approach This book follows a step-by-step approach with detailed strategies for understanding, extracting, analyzing, visualizing, and modeling data from several major social network platforms such as Facebook, Twitter, Foursquare, Flickr, Github, and StackExchange. The chapters cover several real-world use cases and leverage data science, machine learning, network analysis, and graph theory concepts along with the R ecosystem, including popular packages such as ggplot2, caret,dplyr, topicmodels, tm, and so on.
Download or read book Football Hackers written by Christoph Biermann and published by Kings Road Publishing. This book was released on 2019-05-30 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well written and thoughtful. Takes us on a tour of some of Europe's most innovative football thinkers - Financial Times The future of football is now. Football's data revolution has only just begun. The arrival of advanced metrics and detailed analysis is already reshaping the modern game. We can now fully assess player performance, analyse the role of luck and measure what really leads to victory. There is no turning back. Now the race is on between football's wealthiest clubs and a group of outsiders, nerds and rule-breakers, who are turning the game on its head with their staggering innovations. Winning is no longer just about what happens out on the pitch, it's now a battle taking place in boardrooms and on screens across international borders with the world's brightest minds driving for an edge over their fiercest rivals. Christoph Biermann has moved in the midst of these disruptive upheavals, talking to scientists, coaches, managers, scouts and psychologists in the world's major clubs, traveling across Europe and the US and revealing the hidden - and often jaw-dropping - truths behind the beautiful game. 'A book full of exciting ideas and inside views on modern football. The most exciting book in an exciting time for football.' Thomas Hitzlsperger
Download or read book Introduction to Data Science written by Laura Igual and published by Springer. This book was released on 2017-02-22 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.
Download or read book Sport Analytics written by Gil Fried and published by Taylor & Francis. This book was released on 2016-11-10 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing availability of data has transformed the way sports are played, promoted and managed. This is the first textbook to explain how the big data revolution is having a profound influence across the sport industry, demonstrating how sport managers and business professionals can use analytical techniques to improve their professional practice. While other sports analytics books have focused on player performance data, this book shows how analytics can be applied to every functional area of sport business, from marketing and event management to finance and legal services. Drawing on research that spans the entire sport industry, it explains how data is influencing the most important decisions, from ticket sales and human resources to risk management and facility operations. Each chapter contains real world examples, industry profiles and extended case studies which are complimented by a companion website full of useful learning resources. Sport Analytics: A data-driven approach to sport business and management is an essential text for all sport management students and an invaluable reference for any sport management professional involved in operational research.
Download or read book Analytic Methods in Sports written by Thomas A. Severini and published by CRC Press. This book was released on 2020-04-15 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the greatest changes in the sports world in the past 20 years has been the use of mathematical methods to analyze performances, recognize trends and patterns, and predict results. Analytic Methods in Sports: Using Mathematics and Statistics to Understand Data from Baseball, Football, Basketball, and Other Sports, Second Edition provides a concise yet thorough introduction to the analytic and statistical methods that are useful in studying sports. The book gives you all the tools necessary to answer key questions in sports analysis. It explains how to apply the methods to sports data and interpret the results, demonstrating that the analysis of sports data is often different from standard statistical analyses. The book integrates a large number of motivating sports examples throughout and offers guidance on computation and suggestions for further reading in each chapter. Features Covers numerous statistical procedures for analyzing data based on sports results Presents fundamental methods for describing and summarizing data Describes aspects of probability theory and basic statistical concepts that are necessary to understand and deal with the randomness inherent in sports data Explains the statistical reasoning underlying the methods Illustrates the methods using real data drawn from a wide variety of sports Offers many of the datasets on the author’s website, enabling you to replicate the analyses or conduct related analyses New to the Second Edition R code included for all calculations A new chapter discussing several more advanced methods, such as binary response models, random effects, multilevel models, spline methods, and principal components analysis, and more Exercises added to the end of each chapter, to enable use for courses and self-study
Download or read book Data Science Analytics and Machine Learning with R written by Luiz Paulo Favero and published by Academic Press. This book was released on 2023-01-23 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science, Analytics and Machine Learning with R explains the principles of data mining and machine learning techniques and accentuates the importance of applied and multivariate modeling. The book emphasizes the fundamentals of each technique, with step-by-step codes and real-world examples with data from areas such as medicine and health, biology, engineering, technology and related sciences. Examples use the most recent R language syntax, with recognized robust, widespread and current packages. Code scripts are exhaustively commented, making it clear to readers what happens in each command. For data collection, readers are instructed how to build their own robots from the very beginning. In addition, an entire chapter focuses on the concept of spatial analysis, allowing readers to build their own maps through geo-referenced data (such as in epidemiologic research) and some basic statistical techniques. Other chapters cover ensemble and uplift modeling and GLMM (Generalized Linear Mixed Models) estimations, both linear and nonlinear. - Presents a comprehensive and practical overview of machine learning, data mining and AI techniques for a broad multidisciplinary audience - Serves readers who are interested in statistics, analytics and modeling, and those who wish to deepen their knowledge in programming through the use of R - Teaches readers how to apply machine learning techniques to a wide range of data and subject areas - Presents data in a graphically appealing way, promoting greater information transparency and interactive learning
Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.