Download or read book Probability in Physics written by Yemima Ben-Menahem and published by Springer Science & Business Media. This book was released on 2012-01-25 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
Download or read book Applied Probability written by Kenneth Lange and published by Springer Science & Business Media. This book was released on 2008-01-17 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the fears of university mathematics departments, mathematics educat,ion is growing rather than declining. But the truth of the matter is that the increases are occurring outside departments of mathematics. Engineers, computer scientists, physicists, chemists, economists, statis- cians, biologists, and even philosophers teach and learn a great deal of mathematics. The teaching is not always terribly rigorous, but it tends to be better motivated and better adapted to the needs of students. In my own experience teaching students of biostatistics and mathematical bi- ogy, I attempt to convey both the beauty and utility of probability. This is a tall order, partially because probability theory has its own vocabulary and habits of thought. The axiomatic presentation of advanced probability typically proceeds via measure theory. This approach has the advantage of rigor, but it inwitably misses most of the interesting applications, and many applied scientists rebel against the onslaught of technicalities. In the current book, I endeavor to achieve a balance between theory and app- cations in a rather short compass. While the combination of brevity apd balance sacrifices many of the proofs of a rigorous course, it is still cons- tent with supplying students with many of the relevant theoretical tools. In my opinion, it better to present the mathematical facts without proof rather than omit them altogether.
Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Download or read book Foundations of Constructive Probability Theory written by Yuen-Kwok Chan and published by Cambridge University Press. This book was released on 2021-05-27 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic and general theory of probability within the framework of constructive mathematics.
Download or read book A First Look at Rigorous Probability Theory written by Jeffrey Seth Rosenthal and published by World Scientific. This book was released on 2006 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features an introduction to probability theory using measure theory. This work provides proofs of the essential introductory results and presents the measure theory and mathematical details in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects.
Download or read book Probability Theory and Mathematical Statistics for Engineers written by V. S. Pugachev and published by Elsevier. This book was released on 2014-06-28 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability Theory and Mathematical Statistics for Engineers focuses on the concepts of probability theory and mathematical statistics for finite-dimensional random variables. The book underscores the probabilities of events, random variables, and numerical characteristics of random variables. Discussions focus on canonical expansions of random vectors, second-order moments of random vectors, generalization of the density concept, entropy of a distribution, direct evaluation of probabilities, and conditional probabilities. The text then examines projections of random vectors and their distributions, including conditional distributions of projections of a random vector, conditional numerical characteristics, and information contained in random variables. The book elaborates on the functions of random variables and estimation of parameters of distributions. Topics include frequency as a probability estimate, estimation of statistical characteristics, estimation of the expectation and covariance matrix of a random vector, and testing the hypotheses on the parameters of distributions. The text then takes a look at estimator theory and estimation of distributions. The book is a vital source of data for students, engineers, postgraduates of applied mathematics, and other institutes of higher technical education.
Download or read book Essentials of Probability Theory for Statisticians written by Michael A. Proschan and published by CRC Press. This book was released on 2016-03-23 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentials of Probability Theory for Statisticians provides graduate students with a rigorous treatment of probability theory, with an emphasis on results central to theoretical statistics. It presents classical probability theory motivated with illustrative examples in biostatistics, such as outlier tests, monitoring clinical trials, and using adaptive methods to make design changes based on accumulating data. The authors explain different methods of proofs and show how they are useful for establishing classic probability results. After building a foundation in probability, the text intersperses examples that make seemingly esoteric mathematical constructs more intuitive. These examples elucidate essential elements in definitions and conditions in theorems. In addition, counterexamples further clarify nuances in meaning and expose common fallacies in logic. This text encourages students in statistics and biostatistics to think carefully about probability. It gives them the rigorous foundation necessary to provide valid proofs and avoid paradoxes and nonsensical conclusions.
Download or read book Probability Theory and Stochastic Processes written by Pierre Brémaud and published by Springer Nature. This book was released on 2020-04-07 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ultimate objective of this book is to present a panoramic view of the main stochastic processes which have an impact on applications, with complete proofs and exercises. Random processes play a central role in the applied sciences, including operations research, insurance, finance, biology, physics, computer and communications networks, and signal processing. In order to help the reader to reach a level of technical autonomy sufficient to understand the presented models, this book includes a reasonable dose of probability theory. On the other hand, the study of stochastic processes gives an opportunity to apply the main theoretical results of probability theory beyond classroom examples and in a non-trivial manner that makes this discipline look more attractive to the applications-oriented student. One can distinguish three parts of this book. The first four chapters are about probability theory, Chapters 5 to 8 concern random sequences, or discrete-time stochastic processes, and the rest of the book focuses on stochastic processes and point processes. There is sufficient modularity for the instructor or the self-teaching reader to design a course or a study program adapted to her/his specific needs. This book is in a large measure self-contained.
Download or read book Probability Theory written by and published by Allied Publishers. This book was released on 2013 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability theory
Download or read book Mathematical Theory of Probability and Statistics written by Richard von Mises and published by Academic Press. This book was released on 2014-05-12 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Theory of Probability and Statistics focuses on the contributions and influence of Richard von Mises on the processes, methodologies, and approaches involved in the mathematical theory of probability and statistics. The publication first elaborates on fundamentals, general label space, and basic properties of distributions. Discussions focus on Gaussian distribution, Poisson distribution, mean value variance and other moments, non-countable label space, basic assumptions, operations, and distribution function. The text then ponders on examples of combined operations and summation of chance variables characteristic function. The book takes a look at the asymptotic distribution of the sum of chance variables and probability inference. Topics include inference from a finite number of observations, law of large numbers, asymptotic distributions, limit distribution of the sum of independent discrete random variables, probability of the sum of rare events, and probability density. The text also focuses on the introduction to the theory of statistical functions and multivariate statistics. The publication is a dependable source of information for researchers interested in the mathematical theory of probability and statistics
Download or read book Introduction to Probability written by David F. Anderson and published by Cambridge University Press. This book was released on 2017-11-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Download or read book Probability with Martingales written by David Williams and published by Cambridge University Press. This book was released on 1991-02-14 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory.
Download or read book Paradoxes in Probability Theory written by William Eckhardt and published by Springer Science & Business Media. This book was released on 2012-09-26 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: Paradoxes provide a vehicle for exposing misinterpretations and misapplications of accepted principles. This book discusses seven paradoxes surrounding probability theory. Some remain the focus of controversy; others have allegedly been solved, however the accepted solutions are demonstrably incorrect. Each paradox is shown to rest on one or more fallacies. Instead of the esoteric, idiosyncratic, and untested methods that have been brought to bear on these problems, the book invokes uncontroversial probability principles, acceptable both to frequentists and subjectivists. The philosophical disputation inspired by these paradoxes is shown to be misguided and unnecessary; for instance, startling claims concerning human destiny and the nature of reality are directly related to fallacious reasoning in a betting paradox, and a problem analyzed in philosophy journals is resolved by means of a computer program.
Download or read book Markov Chains written by Pierre Bremaud and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.
Download or read book Probability Theory with Applications written by Malempati M. Rao and published by Springer Science & Business Media. This book was released on 2006-06-03 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a revised and expanded edition of a successful graduate and reference text. The book is designed for a standard graduate course on probability theory, including some important applications. The new edition offers a detailed treatment of the core area of probability, and both structural and limit results are presented in detail. Compared to the first edition, the material and presentation are better highlighted; each chapter is improved and updated.
Download or read book Probability Theory written by Werner Linde and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-10-24 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an introduction to Probability Theory and Mathematical Statistics for students in mathematics, the physical sciences, engineering, and related fields. It is based on the author’s 25 years of experience teaching probability and is squarely aimed at helping students overcome common difficulties in learning the subject. The focus of the book is an explanation of the theory, mainly by the use of many examples. Whenever possible, proofs of stated results are provided. All sections conclude with a short list of problems. The book also includes several optional sections on more advanced topics. This textbook would be ideal for use in a first course in Probability Theory. Contents: Probabilities Conditional Probabilities and Independence Random Variables and Their Distribution Operations on Random Variables Expected Value, Variance, and Covariance Normally Distributed Random Vectors Limit Theorems Mathematical Statistics Appendix Bibliography Index
Download or read book Mathematics of Probability written by Daniel W. Stroock and published by American Mathematical Soc.. This book was released on 2013-07-05 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the basics of modern probability theory. It begins with probability theory on finite and countable sample spaces and then passes from there to a concise course on measure theory, which is followed by some initial applications to probability theory, including independence and conditional expectations. The second half of the book deals with Gaussian random variables, with Markov chains, with a few continuous parameter processes, including Brownian motion, and, finally, with martingales, both discrete and continuous parameter ones. The book is a self-contained introduction to probability theory and the measure theory required to study it.