EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book FLUID FLOW AND HEAT TRANSFER IN STRATIFIED SYSTEMS

Download or read book FLUID FLOW AND HEAT TRANSFER IN STRATIFIED SYSTEMS written by Marvin LaVerne Katz and published by . This book was released on 1961 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book fluid flow and heat transfer in stratified system

Download or read book fluid flow and heat transfer in stratified system written by marvin l. katz and published by . This book was released on 1960 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Heat Transfer and Fluid Flow

Download or read book Numerical Heat Transfer and Fluid Flow written by Suhas Patankar and published by Taylor & Francis. This book was released on 2018-10-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.

Book Fluid Flow and Heat Transfer

Download or read book Fluid Flow and Heat Transfer written by Aksel Lydersen and published by John Wiley & Sons. This book was released on 1979 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Tree Shaped Fluid Flow and Heat Transfer

Download or read book Tree Shaped Fluid Flow and Heat Transfer written by António F. Miguel and published by Springer. This book was released on 2018-04-20 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the first comprehensive state-of-the-art research on tree (dendritic) fluid flow and heat transfer. It covers theory, numerical simulations and applications. It can serve as extra reading for graduate-level courses in engineering and biotechnology. Tree flow networks, also known as dendritic flow networks, are ubiquitous in nature and engineering applications. Tree-shaped design is prevalent when the tendency of the flow (fluid, energy, matter and information) is to move more easily between a volume (or area) and a point, and vice versa. From the geophysical trees to animals and plants, we can observe numerous systems that exhibit tree architectures: river basins and deltas, lungs, circulatory systems, kidneys, vascularized tissues, roots, stems, and leaves, among others. Tree design is also prevalent in man-made flow systems, both in macro- and microfluidic devices. A vast array of tree-shaped design is available and still emerging in chemical engineering, electronics cooling, bioengineering, chemical and bioreactors, lab-on-a-chip systems, and smart materials with volumetric functionalities, such as self-healing and self-cooling. This book also addresses the basic design patterns and solutions for cooling bodies where there is heat generation. Several shapes of fin as well as assemblies of fins are addressed. An up-to-date review of cavities, i.e., inverted or negative fins, for facilitating the flow of heat is also presented. Heat trees using high thermal conductivity material can be used in the cooling of heat-generating bodies, and can also be applied to the cooling of electronics.

Book Fluid Flow and Heat Transfer in Rotating Porous Media

Download or read book Fluid Flow and Heat Transfer in Rotating Porous Media written by Peter Vadasz and published by Springer. This book was released on 2015-07-28 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.

Book Transport Phenomena in Multiphase Systems

Download or read book Transport Phenomena in Multiphase Systems written by Amir Faghri and published by Academic Press. This book was released on 2006 with total page 1072 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors

Book Micropolar Fluids

Download or read book Micropolar Fluids written by Grzegorz Lukaszewicz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micropolar fluids are fluids with microstructure. They belong to a class of fluids with nonsymmetric stress tensor that we shall call polar fluids, and include, as a special case, the well-established Navier-Stokes model of classical fluids that we shall call ordinary fluids. Physically, micropolar fluids may represent fluids consisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium, where the deformation of fluid particles is ignored. The model of micropolar fluids introduced in [65] by C. A. Eringen is worth studying as a very well balanced one. First, it is a well-founded and significant generalization of the classical Navier-Stokes model, covering, both in theory and applications, many more phenomena than the classical one. Moreover, it is elegant and not too complicated, in other words, man ageable to both mathematicians who study its theory and physicists and engineers who apply it. The main aim of this book is to present the theory of micropolar fluids, in particular its mathematical theory, to a wide range of readers. The book also presents two applications of micropolar fluids, one in the theory of lubrication and the other in the theory of porous media, as well as several exact solutions of particular problems and a numerical method. We took pains to make the presentation both clear and uniform.

Book Heat Transfer and Fluid Flow

Download or read book Heat Transfer and Fluid Flow written by and published by . This book was released on 1968 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Homotopy Analysis Method in Nonlinear Differential Equations

Download or read book Homotopy Analysis Method in Nonlinear Differential Equations written by Shijun Liao and published by Springer Science & Business Media. This book was released on 2012-06-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Homotopy Analysis Method in Nonlinear Differential Equations" presents the latest developments and applications of the analytic approximation method for highly nonlinear problems, namely the homotopy analysis method (HAM). Unlike perturbation methods, the HAM has nothing to do with small/large physical parameters. In addition, it provides great freedom to choose the equation-type of linear sub-problems and the base functions of a solution. Above all, it provides a convenient way to guarantee the convergence of a solution. This book consists of three parts. Part I provides its basic ideas and theoretical development. Part II presents the HAM-based Mathematica package BVPh 1.0 for nonlinear boundary-value problems and its applications. Part III shows the validity of the HAM for nonlinear PDEs, such as the American put option and resonance criterion of nonlinear travelling waves. New solutions to a number of nonlinear problems are presented, illustrating the originality of the HAM. Mathematica codes are freely available online to make it easy for readers to understand and use the HAM. This book is suitable for researchers and postgraduates in applied mathematics, physics, nonlinear mechanics, finance and engineering. Dr. Shijun Liao, a distinguished professor of Shanghai Jiao Tong University, is a pioneer of the HAM.

Book Fluid Mechanics  Heat Transfer  and Mass Transfer

Download or read book Fluid Mechanics Heat Transfer and Mass Transfer written by K. S. Raju and published by John Wiley & Sons. This book was released on 2011-04-20 with total page 1422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This broad-based book covers the three major areas of Chemical Engineering. Most of the books in the market involve one of the individual areas, namely, Fluid Mechanics, Heat Transfer or Mass Transfer, rather than all the three. This book presents this material in a single source. This avoids the user having to refer to a number of books to obtain information. Most published books covering all the three areas in a single source emphasize theory rather than practical issues. This book is written with emphasis on practice with brief theoretical concepts in the form of questions and answers, not adopting stereo-typed question-answer approach practiced in certain books in the market, bridging the two areas of theory and practice with respect to the core areas of chemical engineering. Most parts of the book are easily understandable by those who are not experts in the field. Fluid Mechanics chapters include basics on non-Newtonian systems which, for instance find importance in polymer and food processing, flow through piping, flow measurement, pumps, mixing technology and fluidization and two phase flow. For example it covers types of pumps and valves, membranes and areas of their use, different equipment commonly used in chemical industry and their merits and drawbacks. Heat Transfer chapters cover the basics involved in conduction, convection and radiation, with emphasis on insulation, heat exchangers, evaporators, condensers, reboilers and fired heaters. Design methods, performance, operational issues and maintenance problems are highlighted. Topics such as heat pipes, heat pumps, heat tracing, steam traps, refrigeration, cooling of electronic devices, NOx control find place in the book. Mass transfer chapters cover basics such as diffusion, theories, analogies, mass transfer coefficients and mass transfer with chemical reaction, equipment such as tray and packed columns, column internals including structural packings, design, operational and installation issues, drums and separators are discussed in good detail. Absorption, distillation, extraction and leaching with applications and design methods, including emerging practices involving Divided Wall and Petluk column arrangements, multicomponent separations, supercritical solvent extraction find place in the book.

Book Applications of Nanofluid for Heat Transfer Enhancement

Download or read book Applications of Nanofluid for Heat Transfer Enhancement written by Mohsen Sheikholeslami and published by William Andrew. This book was released on 2017-02-26 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Nanofluid for Heat Transfer Enhancement explores recent progress in computational fluid dynamic and nonlinear science and its applications to nanofluid flow and heat transfer. The opening chapters explain governing equations and then move on to discussions of free and forced convection heat transfers of nanofluids. Next, the effect of nanofluid in the presence of an electric field, magnetic field, and thermal radiation are investigated, with final sections devoted to nanofluid flow in porous media and application of nanofluid for solidification. The models discussed in the book have applications in various fields, including mathematics, physics, information science, biology, medicine, engineering, nanotechnology, and materials science. Presents the latest information on nanofluid free and force convection heat transfer, of nanofluid in the presence of thermal radiation, and nanofluid in the presence of an electric field Provides an understanding of the fundamentals in new numerical and analytical methods Includes codes for each modeling method discussed, along with advice on how to best apply them

Book Physical and Computational Aspects of Convective Heat Transfer

Download or read book Physical and Computational Aspects of Convective Heat Transfer written by T. Cebeci and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is concerned with the transport of thermal energy in flows of practical significance. The temperature distributions which result from convective heat transfer, in contrast to those associated with radiation heat transfer and conduction in solids, are related to velocity characteristics and we have included sufficient information of momentum transfer to make the book self-contained. This is readily achieved because of the close relation ship between the equations which represent conservation of momentum and energy: it is very desirable since convective heat transfer involves flows with large temperature differences, where the equations are coupled through an equation of state, as well as flows with small temperature differences where the energy equation is dependent on the momentum equation but the momentum equation is assumed independent of the energy equation. The equations which represent the conservation of scalar properties, including thermal energy, species concentration and particle number density can be identical in form and solutions obtained in terms of one dependent variable can represent those of another. Thus, although the discussion and arguments of this book are expressed in terms of heat transfer, they are relevant to problems of mass and particle transport. Care is required, however, in making use of these analogies since, for example, identical boundary conditions are not usually achieved in practice and mass transfer can involve more than one dependent variable.

Book Modeling and Simulation of Fluid Flow and Heat Transfer

Download or read book Modeling and Simulation of Fluid Flow and Heat Transfer written by Reshu Gupta and published by . This book was released on 2024-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In the rapidly advancing modern world, scientific and technological understanding and innovation are reaching new heights. Computational fluid dynamics and heat transfer have emerged as powerful tools, playing a pivotal role in the analysis and design of complex engineering problems and processes. With the ability to mathematically model various engineering phenomena, these computational tools offer a deeper understanding of intricate dynamics before the physical prototype is created. Widely employed as simulation tools, computational fluid dynamics and heat transfer codes enable the virtual or digital prototype development of products and devices involving complex transport and multiphasic phenomena. They have become an indispensable element of the agile product development environment across diverse sectors of manufacturing, facilitating accelerated product development cycles. "Modeling and Simulation of Fluid Flow and Heat Transfer" delves into the fascinating world of fluid dynamics and heat transfer modeling, presenting an extensive exploration of these subjects. The book is a valuable resource for researchers, engineers, and students seeking to comprehend and apply numerical methods and computational tools in fluid dynamics and heat transfer problems. Esteemed as a leading publication in the fields of heat transfer and computational fluid dynamics, it serves as a platform for exchanging fundamental ideas among researchers worldwide. The book is meticulously crafted to introduce scientists, engineers, educators, research scientists, and both undergraduate and graduate students to computational and analytical techniques for fluid flow and heat transfer. Emphasizing the latest experimental and analytical original research in heat transfer and fluid dynamics, the book showcases a detailed coverage of problems such as one-dimensional, two-dimensional, steady-state, and transient conduction and convection. Furthermore, it presents the author's significant contributions to the development of mathematical models and the application of mathematical methods for analyzing nonlinear dynamic processes. Key Features of the Book: Covers the analysis of advanced thermal engineering systems. Explores the simulation of various fluids with slip effect. Applies entropy and optimization techniques to thermal engineering systems. Discusses heat and mass transfer phenomena. Explores fluid flow and heat transfer in porous media. Captures recent developments in analytical and computational methods used to investigate complex mathematical models of fluid dynamics. Covers the application of mathematical and computational modeling techniques to fluid flow problems in various geometries"

Book Cryogenic Two Phase Flow

    Book Details:
  • Author : N. N. Filina
  • Publisher : Cambridge University Press
  • Release : 1996-05-31
  • ISBN : 9780521481922
  • Pages : 152 pages

Download or read book Cryogenic Two Phase Flow written by N. N. Filina and published by Cambridge University Press. This book was released on 1996-05-31 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cryogenic systems that involve two-phase (vapor-liquid) flows are widely used in industries such as aerospace, metallurgy, power engineering, and food production, as well as in high energy physics research. The purpose of this book is to describe characteristic features of cryogenic systems involving two-phase flow, create mathematical models of these systems, and then show how the models may be used to develop optimal designs for practical cryogenic systems. The models are examined using analytical and numerical techniques, and then the predictions are compared to experimental measurements. Since transient phenomena can produce severe and unexpected effects in cryogenic systems, the authors pay particular attention to this important topic. Examples in the book are drawn from cryogenic fluid transport, gasification, and the stabilization of superconducting magnets. Much of this work is related to the development of large Russian systems in the areas of space technology, energy research, and particle physics. This book, the first devoted solely to cryogenic two-phase flow, will be a valuable reference for cryogenic engineers and scientists.

Book Encyclopedia Of Two phase Heat Transfer And Flow I  Fundamentals And Methods  A 4 volume Set

Download or read book Encyclopedia Of Two phase Heat Transfer And Flow I Fundamentals And Methods A 4 volume Set written by John R Thome and published by World Scientific. This book was released on 2015-08-14 with total page 1109 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the two-set series is to present a very detailed and up-to-date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods.Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condensation in plate heat exchangers. All of these chapters include the latest methods for predicting not only local heat transfer coefficients but also pressure drops.Professors and students will find this 'Encyclopediaa of Two-Phase Heat Transfer and Flow' particularly exciting, as it contains authored books and thorough state-of-the-art reviews on many basic and special topics, such as numerical modeling of two-phase heat tranfser and adiabatic bubbly and slug flows, the unified annular flow boiling model, flow pattern maps, condensation and boiling theories, new emerging topics, etc.

Book Heat Transfer During Stratified Flow of Steam   Water Mixtures

Download or read book Heat Transfer During Stratified Flow of Steam Water Mixtures written by Kenneth Lawrence Johnson and published by . This book was released on 1965 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: