EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fluctuations of L  vy Processes with Applications

Download or read book Fluctuations of L vy Processes with Applications written by Andreas E. Kyprianou and published by Springer Science & Business Media. This book was released on 2014-01-09 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance, continuous-state branching processes and positive self-similar Markov processes. This textbook is based on a series of graduate courses concerning the theory and application of Lévy processes from the perspective of their path fluctuations. Central to the presentation is the decomposition of paths in terms of excursions from the running maximum as well as an understanding of short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical tractability. The second edition additionally addresses recent developments in the potential analysis of subordinators, Wiener-Hopf theory, the theory of scale functions and their application to ruin theory, as well as including an extensive overview of the classical and modern theory of positive self-similar Markov processes. Each chapter has a comprehensive set of exercises.

Book Introductory Lectures on Fluctuations of L  vy Processes with Applications

Download or read book Introductory Lectures on Fluctuations of L vy Processes with Applications written by Andreas E. Kyprianou and published by Springer Science & Business Media. This book was released on 2006-12-18 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook forms the basis of a graduate course on the theory and applications of Lévy processes, from the perspective of their path fluctuations. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical transparency and explicitness.

Book Fluctuation Theory for L  vy Processes

Download or read book Fluctuation Theory for L vy Processes written by Ronald A. Doney and published by École d'Été de Probabilités de Saint-Flour. This book was released on 2007-04-19 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lévy processes, i.e. processes in continuous time with stationary and independent increments, are named after Paul Lévy, who made the connection with infinitely divisible distributions and described their structure. They form a flexible class of models, which have been applied to the study of storage processes, insurance risk, queues, turbulence, laser cooling, ... and of course finance, where the feature that they include examples having "heavy tails" is particularly important. Their sample path behaviour poses a variety of difficult and fascinating problems. Such problems, and also some related distributional problems, are addressed in detail in these notes that reflect the content of the course given by R. Doney in St. Flour in 2005.

Book Fluctuation Theory for L  vy Processes

Download or read book Fluctuation Theory for L vy Processes written by Ronald A. Doney and published by Springer. This book was released on 2007-04-25 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lévy processes, that is, processes in continuous time with stationary and independent increments, form a flexible class of models, which have been applied to the study of storage processes, insurance risk, queues, turbulence, laser cooling, and of course finance, where they include particularly important examples having "heavy tails." Their sample path behaviour poses a variety of challenging and fascinating problems, which are addressed in detail.

Book L  vy Processes

    Book Details:
  • Author : Ole E Barndorff-Nielsen
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461201977
  • Pages : 414 pages

Download or read book L vy Processes written by Ole E Barndorff-Nielsen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.

Book Cambridge Tracts in Mathematics

Download or read book Cambridge Tracts in Mathematics written by Jean Bertoin and published by Cambridge University Press. This book was released on 1996 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1996 book is a comprehensive account of the theory of Lévy processes; aimed at probability theorists.

Book A Lifetime of Excursions Through Random Walks and L  vy Processes

Download or read book A Lifetime of Excursions Through Random Walks and L vy Processes written by Loïc Chaumont and published by Birkhäuser. This book was released on 2022-12-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection honours Ron Doney’s work and includes invited articles by his collaborators and friends. After an introduction reviewing Ron Doney’s mathematical achievements and how they have influenced the field, the contributed papers cover both discrete-time processes, including random walks and variants thereof, and continuous-time processes, including Lévy processes and diffusions. A good number of the articles are focused on classical fluctuation theory and its ramifications, the area for which Ron Doney is best known.

Book Queues and L  vy Fluctuation Theory

Download or read book Queues and L vy Fluctuation Theory written by Krzysztof Dębicki and published by Springer. This book was released on 2015-08-06 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an extensive introduction to queueing models driven by Lévy-processes as well as a systematic account of the literature on Lévy-driven queues. The objective is to make the reader familiar with the wide set of probabilistic techniques that have been developed over the past decades, including transform-based techniques, martingales, rate-conservation arguments, change-of-measure, importance sampling, and large deviations. On the application side, it demonstrates how Lévy traffic models arise when modelling current queueing-type systems (as communication networks) and includes applications to finance. Queues and Lévy Fluctuation Theory will appeal to postgraduate students and researchers in mathematics, computer science, and electrical engineering. Basic prerequisites are probability theory and stochastic processes.

Book Matrix Exponential Distributions in Applied Probability

Download or read book Matrix Exponential Distributions in Applied Probability written by Mogens Bladt and published by Springer. This book was released on 2017-05-18 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distributions and related processes that will allow practitioners to calibrate models to real data. Aimed as a textbook for graduate students in applied probability and statistics, the book provides all the necessary background on Poisson processes, Markov chains, jump processes, martingales and re-generative methods. It is our hope that the provided background may encourage researchers and practitioners from other fields, like biology, genetics and medicine, who wish to become acquainted with the matrix-exponential method and its applications.

Book Financial Modelling with Jump Processes

Download or read book Financial Modelling with Jump Processes written by Peter Tankov and published by CRC Press. This book was released on 2003-12-30 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic

Book Ruin Probabilities

    Book Details:
  • Author : S?ren Asmussen
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 9814282529
  • Pages : 621 pages

Download or read book Ruin Probabilities written by S?ren Asmussen and published by World Scientific. This book was released on 2010 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cram‚r?Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially updated and extended second version, new topics include stochastic control, fluctuation theory for Levy processes, Gerber?Shiu functions and dependence.

Book Stochastic Storage Processes

Download or read book Stochastic Storage Processes written by Narahari U. Prabhu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on a course I have taught at Cornell University since 1965. The primary topic of this course was queueing theory, but related topics such as inventories, insurance risk, and dams were also included. As a text I used my earlier book, Queues and Inventories (John Wiley, New York, 1965). Over the years the emphasis in this course shifted from detailed analysis of probability models to the study of stochastic processes that arise from them, and the subtitle of the text, "A Study of Their Basic Stochastic Processes," became a more appropriate description of the course. My own research into the fluctuation theory for U:vy processes provided a new perspective on the topics discussed, and enabled me to reorganize the material. The lecture notes used for the course went through several versions, and the final version became this book. A detailed description of my approach will be found in the Introduction. I have not attempted to give credit to authors of individual results. Readers interested in the historical literature should consult the Selected Bibliography given at the end of the Introduction. The original work in this area is presented here with simpler proofs that make full use of the special features of the underlying stochastic processes. The same approach makes it possible to provide several new results. Thanks are due to Kathy King for her excellent typing of the manuscript.

Book A Lifetime of Excursions Through Random Walks and L  vy Processes

Download or read book A Lifetime of Excursions Through Random Walks and L vy Processes written by Loïc Chaumont and published by Springer Nature. This book was released on 2022-01-01 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection honours Ron Doney’s work and includes invited articles by his collaborators and friends. After an introduction reviewing Ron Doney’s mathematical achievements and how they have influenced the field, the contributed papers cover both discrete-time processes, including random walks and variants thereof, and continuous-time processes, including Lévy processes and diffusions. A good number of the articles are focused on classical fluctuation theory and its ramifications, the area for which Ron Doney is best known.

Book Stochastic Processes  Theory and Methods

Download or read book Stochastic Processes Theory and Methods written by D N Shanbhag and published by Gulf Professional Publishing. This book was released on 2001 with total page 990 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume in the series contains chapters on areas such as pareto processes, branching processes, inference in stochastic processes, Poisson approximation, Levy processes, and iterated random maps and some classes of Markov processes. Other chapters cover random walk and fluctuation theory, a semigroup representation and asymptomatic behavior of certain statistics of the Fisher-Wright-Moran coalescent, continuous-time ARMA processes, record sequence and their applications, stochastic networks with product form equilibrium, and stochastic processes in insurance and finance. Other subjects include renewal theory, stochastic processes in reliability, supports of stochastic processes of multiplicity one, Markov chains, diffusion processes, and Ito's stochastic calculus and its applications. c. Book News Inc.

Book Sample Path Analysis and Distributions of Boundary Crossing Times

Download or read book Sample Path Analysis and Distributions of Boundary Crossing Times written by Shelemyahu Zacks and published by Springer. This book was released on 2017-10-12 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is focused on the derivations of exact distributions of first boundary crossing times of Poisson processes, compound Poisson processes, and more general renewal processes. The content is limited to the distributions of first boundary crossing times and their applications to various stochastic models. This book provides the theory and techniques for exact computations of distributions and moments of level crossing times. In addition, these techniques could replace simulations in many cases, thus providing more insight about the phenomenona studied. This book takes a general approach for studying telegraph processes and is based on nearly thirty published papers by the author and collaborators over the past twenty five years. No prior knowledge of advanced probability is required, making the book widely available to students and researchers in applied probability, operations research, applied physics, and applied mathematics.

Book Spatial Branching Processes  Random Snakes and Partial Differential Equations

Download or read book Spatial Branching Processes Random Snakes and Partial Differential Equations written by Jean-Francois Le Gall and published by Birkhäuser. This book was released on 2012-12-06 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces several remarkable new probabilistic objects that combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial differential equations (PDE). The Brownian snake approach is used to give a powerful representation of superprocesses and also to investigate connections between superprocesses and PDEs. These are notable because almost every important probabilistic question corresponds to a significant analytic problem.

Book Gerber   Shiu Risk Theory

    Book Details:
  • Author : Andreas E. Kyprianou
  • Publisher : Springer Science & Business Media
  • Release : 2013-10-02
  • ISBN : 3319023039
  • Pages : 95 pages

Download or read book Gerber Shiu Risk Theory written by Andreas E. Kyprianou and published by Springer Science & Business Media. This book was released on 2013-10-02 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: Motivated by the many and long-standing contributions of H. Gerber and E. Shiu, this book gives a modern perspective on the problem of ruin for the classical Cramér–Lundberg model and the surplus of an insurance company. The book studies martingales and path decompositions, which are the main tools used in analysing the distribution of the time of ruin, the wealth prior to ruin and the deficit at ruin. Recent developments in exotic ruin theory are also considered. In particular, by making dividend or tax payments out of the surplus process, the effect on ruin is explored. Gerber-Shiu Risk Theory can be used as lecture notes and is suitable for a graduate course. Each chapter corresponds to approximately two hours of lectures.