EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Flame Turbulence Interaction in Premixed Turbulent Combustion

Download or read book Flame Turbulence Interaction in Premixed Turbulent Combustion written by Umair Ahmed and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulent Premixed Flames

Download or read book Turbulent Premixed Flames written by Nedunchezhian Swaminathan and published by Cambridge University Press. This book was released on 2011-04-25 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Book Modeling and Simulation of Turbulent Combustion

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Book Turbulent Combustion Modeling

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Book Fundamentals of Turbulent and Multiphase Combustion

Download or read book Fundamentals of Turbulent and Multiphase Combustion written by Kenneth Kuan-yun Kuo and published by John Wiley & Sons. This book was released on 2012-07-03 with total page 914 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed coverage of advanced combustion topics from the author of Principles of combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form—until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence, combustion, and multiphase phenomena along with useful experimental techniques, including non-intrusive, laser-based measurement techniques, providing a firm background in both contemporary and classical approaches. Beginning with two full chapters on laminar premixed and non-premixed flames, this book takes a multiphase approach, beginning with more common topics and moving on to higher-level applications. In addition, Fundamentals of Turbulent and Multiphase Combustion: Addresses seven basic topical areas in combustion and multiphase flows, including laminar premixed and non-premixed flames, theory of turbulence, turbulent premixed and non-premixed flames, and multiphase flows Covers spray atomization and combustion, solid-propellant combustion, homogeneous propellants, nitramines, reacting boundary-layer flows, single energetic particle combustion, and granular bed combustion Provides experimental setups and results whenever appropriate Supported with a large number of examples and problems as well as a solutions manual, Fundamentals of Turbulent and Multiphase Combustion is an important resource for professional engineers and researchers as well as graduate students in mechanical, chemical, and aerospace engineering.

Book Turbulent Combustion

    Book Details:
  • Author : Norbert Peters
  • Publisher : Cambridge University Press
  • Release : 2000-08-15
  • ISBN : 1139428063
  • Pages : 322 pages

Download or read book Turbulent Combustion written by Norbert Peters and published by Cambridge University Press. This book was released on 2000-08-15 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Book Turbulence Interaction Effects in Turbulent Premixed Flames

Download or read book Turbulence Interaction Effects in Turbulent Premixed Flames written by K. N. C. Bray and published by . This book was released on 1976 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Bray-Moss model for turbulent, premixed combustion is applied to plane, oblique combustion waves. The analysis takes into account the influence of turbulence and inhomogeneity on the effective rate of heat release, and also the competing effects of dilatation and turbulence production due to shear in the turbulence kinetic energy balance. Predictions are made of the flame speed and the structure of the reaction zone in cases where turbulent mixing is rate limiting. Qualitative agreement is found with relevant experimentat data.

Book Turbulent Reactive Flows

Download or read book Turbulent Reactive Flows written by R. Borghi and published by Springer. This book was released on 2012-10-20 with total page 950 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent reactive flows are of common occurrance in combustion engineering, chemical reactor technology and various types of engines producing power and thrust utilizing chemical and nuclear fuels. Pollutant formation and dispersion in the atmospheric environment and in rivers, lakes and ocean also involve interactions between turbulence, chemical reactivity and heat and mass transfer processes. Considerable advances have occurred over the past twenty years in the understanding, analysis, measurement, prediction and control of turbulent reactive flows. Two main contributors to such advances are improvements in instrumentation and spectacular growth in computation: hardware, sciences and skills and data processing software, each leading to developments in others. Turbulence presents several features that are situation-specific. Both for that reason and a number of others, it is yet difficult to visualize a so-called solution of the turbulence problem or even a generalized approach to the problem. It appears that recognition of patterns and structures in turbulent flow and their study based on considerations of stability, interactions, chaos and fractal character may be opening up an avenue of research that may be leading to a generalized approach to classification and analysis and, possibly, prediction of specific processes in the flowfield. Predictions for engineering use, on the other hand, can be foreseen for sometime to come to depend upon modeling of selected features of turbulence at various levels of sophistication dictated by perceived need and available capability.

Book Interaction Effects in Premixed Turbulent Combustion

Download or read book Interaction Effects in Premixed Turbulent Combustion written by P. A. Libby and published by . This book was released on 1985 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research has been concerned with two topics in premixed turbulent combustion. One relates to a continuation of the research on the discovery of new mechanisms for turbulent transport and turbulence generation arising from the interaction of mean force fields due to gradients of either pressure or shear stresses and density variations. These earlier studies consider infinite planar flames and since the mechanisms in question are confined to the flames themselves, the question arises as to their applied significance and importance in determining global features of turbulent flows consisting of two regions of uniform density on each side of a flame. To examine this question we have extended the analysis to provide a unified theory for the description of all three regions. The second topics relates to the consideration of the length and time scales of the temperature field in a premixed turbulent flame. The time history of the temperature at a point within such a flame involves alternately high and low values corresponsing respectively to the passage of products and reactants. By appropriate normalization such a history can be made into a telegraph signal whose statistical characteristics provide information on the time scales of the temperature field. We have shown that an analysis of these characteristics leads to a model for an important quantity in the phenomenology of premixed turbulent combustion, namely the mean rate of chemical reaction.

Book Theoretical and Numerical Combustion

Download or read book Theoretical and Numerical Combustion written by Thierry Poinsot and published by R.T. Edwards, Inc.. This book was released on 2005 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing numerical techniques for combustion, this textbook describes both laminar and turbulent flames, addresses the problem of flame-wall interaction, and presents a series of theoretical tools used to study the coupling phenomena between combustion and acoustics. The second edition incorporates recent advances in unsteady simulation methods,

Book Numerical Experiments in Homogeneous Turbulence

Download or read book Numerical Experiments in Homogeneous Turbulence written by Robert Sugden Rogallo and published by . This book was released on 1981 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Turbulent Combustion Physics and Applications

Download or read book Advanced Turbulent Combustion Physics and Applications written by N. Swaminathan and published by Cambridge University Press. This book was released on 2022-01-06 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore a thorough overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application.

Book Fundamentals of Premixed Turbulent Combustion

Download or read book Fundamentals of Premixed Turbulent Combustion written by Andrei Lipatnikov and published by CRC Press. This book was released on 2012-10-24 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling a gap in the literature, Fundamentals of Premixed Turbulent Combustion introduces the state of the art of premixed turbulent combustion in an accessible manner for newcomers and experienced researchers alike. To more deeply consider current research issues, the book focuses on the physical mechanisms and phenomenology of premixed flames, with a brief discussion of recent advances in partially premixed turbulent combustion. It begins with a summary of the relevant knowledge needed from disciplines such as thermodynamics, chemical kinetics, molecular transport processes, and fluid dynamics. The book then presents experimental data on the general appearance of premixed turbulent flames and details the physical mechanisms that could affect the flame behavior. It also examines the physical and numerical models for predicting the key features of premixed turbulent combustion. Emphasizing critical analysis, the book compares competing concepts and viewpoints with one another and with the available experimental data, outlining the advantages and disadvantages of each approach. In addition, it discusses recent advances and highlights unresolved issues. Written by a leading expert in the field, this book provides a valuable overview of the physics of premixed turbulent combustion. Combining simplicity and topicality, it helps researchers orient themselves in the contemporary literature and guides them in selecting the best research tools for their work.

Book Direct Numerical Simulation for Turbulent Reacting Flows

Download or read book Direct Numerical Simulation for Turbulent Reacting Flows written by Thierry Baritaud and published by Editions TECHNIP. This book was released on 1996 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Description of accurate boundary conditions for the simulation of reactive flows. Parallel direct numerical simulation of turbulent reactive flow. Flame-wall interaction and heat flux modelling in turbulent channel flow. A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects. Modeling and simulation of turbulent flame kernel evolution. Experimental and theoretical analysis of flame surface density modelling for premixed turbulent combustion. Gradient and counter-gradient transport in turbulent premixed flames. Direct numerical simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

Book High fidelity Computation and Modeling of Turbulent Premixed Combustion

Download or read book High fidelity Computation and Modeling of Turbulent Premixed Combustion written by Yunde Su and published by . This book was released on 2020 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-fidelity simulation of turbulent premixed combustion is desirable for the design of advanced energy-efficient and environmentally-friendly combustion engines. An attractive high-fidelity simulation approach that is applicable to practical combustion problems is the large eddy simulation (LES), in which the large-scale dynamics of flame-turbulence interaction are resolved down to a filter scale while the sub-filter phenomena are modeled. Since the grid size in practical LES is typically comparable to or larger than the flame front thickness, the filtered flame front is not well resolved when the filter size is taken as the grid size. Under such a condition, the spurious propagation of the filtered flame front can occur. To overcome this challenge, the front propagation formulation (FPF) method that was originally proposed to simulate propagating reaction fronts on under-resolved grids is extended to LES of turbulent premixed combustion. The closure of the regularized Dirac delta function, which FPF uses to minimize the spurious propagation, is investigated using direct numerical simulation (DNS) data for statistically planar premixed flames propagating in homogeneous isotropic turbulence. As a key ingredient in the sub-filter flame speed model that is required for the FPF method and many other combustion models, the flame wrinkling in the DNS dataset is studied in the context of fractals. The results show that, for the flames investigated in the DNS, the fractal dimension increases with the Reynolds number and the inner cut-off scale is on the order of the flame thickness. The FPF-LES framework is validated for a non-piloted Bunsen flame in the corrugated flamelet regime and a piloted Bunsen flame in the thin reaction zone regime. In both cases, the predicted results compare reasonably well with experimental measurements, demonstrating the performance of the FPF-LES framework. In LES of the non-piloted Bunsen flame, it is found that neglecting the stretch effects can cause the flame length and radius to be clearly under-predicted, which suggests the necessity to include stretch effects in LES. It is also found that the strain rate in the stretch effect model needs to be evaluated on the unburned side of the filtered flame to avoid the artificial modification of the flame wrinkling. Finally, the FPF-LES framework is applied to an experimentally studied spark-ignition (SI) engine with the emphasis on the prediction of cycle-to-cycle variations (CCVs), which are known to limit engine performance. To capture the degree of CCVs observed in the experiments, a laminar-to-turbulent flame transition model that describes the non-equilibrium sub-filter flame speed evolution during an early stage of flame kernel growth is developed. The multi-cycle LES with the proposed flame transition model under the FPF framework is found to reproduce experimentally-observed CCVs satisfactorily. The simulation results indicate the importance of modeling the laminar-to-turbulent flame transition and the effect of turbulence on the transition process, when predicting CCVs, under certain engine conditions.

Book Micro mixing in Turbulent Premixed Flames

Download or read book Micro mixing in Turbulent Premixed Flames written by Michael Joseph Kuron and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate turbulent combustion models are key to establishing a predictive capability for combustion simulations at the device level. The transported probability density function (TPDF) methods provide an elegant solution to the challenge of closing the mean chemical source term in turbulent combustion modelling as it appears in closed form in the TPDF equations and thus the turbulence-chemistry interaction can be solved for without aggressive assumptions. This is crucial for predicting low temperature combustion, turbulent flames with the presence of local limit phenomena, and pollutant emissions. Despite some reported success in the literature, challenges remain when applying the TPDF method to turbulent premixed flames as the molecular mixing or micro-mixing term is unclosed, the modeling of which is considered to be a primary challenge. The objective of this dissertation is to evaluate the application of existing mixing models to turbulent premixed flames and to create high-fidelity scalar dissipation rate models to predict turbulent premixed combustion. In this dissertation, direct numerical simulation (DNS) data is utilized at each stage to obtain statistical information on the scalar dissipation rate and mixing timescales for turbulent premixed flames. In the first step, DNS of a temporally evolving premixed flame is used as a numerical test bed to evaluate commonly used mixing models in the context of turbulent premixed flames. This study demonstrates that the Euclidean Minimum Spanning Tree (EMST) model is capable of predicting the behavior of a turbulent premixed flame assuming that an accurate model for the scalar mixing rate, and thus the scalar dissipation rate, can be provided. In the next stage of the dissertation, chemical explosive mode analysis (CEMA) and DNS data with realistic chemistry are used to identify physiochemical processes that govern the conditional scalar dissipation rate behavior in a turbulent premixed flame and evaluate mixing timescales. A local Damköhler number is defined based on the CEMA results and four flame zones are identified. It is found that large fluctuations in the instantaneous scalar dissipation rate occur in the explosive zone, where the local Damköhler number is much larger than unity. Two mechanisms are identified to account for the large degree of scatter in the explosive zone: flame-flame interactions and flame-assisted ignition. A model for the Favre-averaged scalar dissipation rate is subsequently developed based on the insight gleaned from the DNS analysis. The new hybrid mixing rate model is developed to account for the scalar mixing rate behavior in both the turbulent mixing limit and the flamelet limit. The new hybrid timescale model is notable for its treatment of the flamelet mixing limit, an area where existing timescale models do not properly recover the correct mixing behavior. Comparisons to the DNS are performed with both a priori and a postereori comparisons, with the new hybrid model performing exceptionally well. Finally, in the last stage of the dissertation, a transport equation for the conditional scalar dissipation rate of a reactive scalar is derived and an order of magnitude analysis is performed to evaluate the importance of each term in the governing equation. The order of magnitude analysis is verified with the DNS data of turbulent premixed flames and an equation of the leading order terms is identified. Models for the unclosed terms in the leading order equation are developed and evaluated with DNS data, and a modelled equation for the conditional scalar dissipation rate is proposed. The modelled equation is then compared to the DNS data, and excellent agreement between the new model and the DNS is observed.

Book Combustion Phenomena

    Book Details:
  • Author : Jozef Jarosinski
  • Publisher : CRC Press
  • Release : 2009-02-12
  • ISBN : 0849384095
  • Pages : 236 pages

Download or read book Combustion Phenomena written by Jozef Jarosinski and published by CRC Press. This book was released on 2009-02-12 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extensively using experimental and numerical illustrations, CombustionPhenomena: Selected Mechanisms of Flame Formation, Propagation, and Extinction provides a comprehensive survey of the fundamental processes of flame formation, propagation, and extinction. Taking you through the stages of combustion, leading experts visually display, mathematically explain, and clearly theorize on important physical topics of combustion. After a historical introduction to the field, they discuss combustion chemistry, flammability limits, and spark ignition. They also study counterflow twin-flame configuration, flame in a vortex core, the propagation characteristics of edge flames, instabilities, and tulip flames. In addition, the book describes flame extinction in narrow channels, global quenching of premixed flames by turbulence, counterflow premixed flame extinction limits, the interaction of flames with fluids in rotating vessels, and turbulent flames. The final chapter explores diffusion flames as well as combustion in spark- and compression-ignition engines. It also examines the transition from deflagration to detonation, along with the detonation wave structure. With downloadable resources of images that beautifully illustrate a range of combustion phenomena, this book facilitates a practical understanding of the processes occurring in the conception, spread, and extinguishment of a flame. It will help you on your way to finding solutions to real issues encountered in transportation, power generation, industrial processes, chemical engineering, and fire and explosion hazards.