EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Flame Synthesis and Doping of Metal Oxide Nanowires and Their Application in Solar Water Splitting

Download or read book Flame Synthesis and Doping of Metal Oxide Nanowires and Their Application in Solar Water Splitting written by Lili Cai and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Considering the increasing energy and environmental problems associated with the exhaustible fossil fuels, renewable energy conversion devices have attracted tremendous attention, which hold the promise to supply the fuel and electricity in a sustainable way. For many of these devices, such as batteries, fuel cells, solar cells and solar water splitting cells, metal oxides are very important functional materials due to their earth abundance, good stability and diverse properties. Recently nanowire-based metal oxides have enabled revolutionary advances in various energy conversion devices, because of their unique physical and chemical properties resulting from the high aspect ratio and large surface area. Despite their advantages, practical applications of metal oxide nanowires are hindered, as conventional synthesis methods have limitations for large scale production. Flame synthesis can potentially solve this large-scale production issue for metal oxide nanowires, given its demonstrated scalability in the industrial production of nanoparticles. However, only until very recently has flame synthesis been applied to metal oxide nanowires. More research is needed to develop advanced flame synthesis method for metal oxide nanowires, to understand the mechanism to well control the size, shape and compositions for reliable manufacture, and to evaluate their quality and functionalities in real devices. This thesis presents a novel flame vapor deposition method for the synthesis of metal oxide nanowires with the capabilities of rapid rate, good uniformity over large area and broad substrate choice. Through the investigation of growth mechanism, good control over the morphology and composition was achieved by tuning the process parameters such as fuel/air ratio, source temperature, substrate material and temperature. In addition to synthesis, flame-based doping method (sol-flame doping) was innovated for controllable doping of metal oxide NWs to modify the properties of host materials at the nanometer scale. This sol-flame doping method not only preserves the morphology and crystallinity of the host NWs, but also allows fine control over the dopant concentration by simply varying the concentration of dopant precursor solution. With this method, significant enhancement of the electrocatalytic activity towards oxygen evolution reaction was achieved for TiO2 NWs (up to 760 mV reduction of the overpotential), attributing to simultaneously improved surface charge transfer kinetics and increased bulk conductivity by doping. Finally, the flame-synthesized metal oxide nanowires were implemented as a photoanode in photoelectrochemical water splitting. By rational design and scalable fabrication, the WO3/BiVO4/Ni:FeOOH composite nanowire photoanode generated a high photocurrent of 4.5 mA/cm2 at a potential of 1.23 VRHE under simulated sunlight, which is among the highest produced by any WO3/BiVO4 based photoanodes. With the demonstrated rapid rate, good controllability and superior performance of the flame-produced metal oxide nanowires, these flame synthesis and doping methods can potentially enable future generation of energy devices by removing the barrier for large-scale production of tailored metal oxide nanowires.

Book Flame Synthesis and Applications of Metal Oxide Nanowires

Download or read book Flame Synthesis and Applications of Metal Oxide Nanowires written by Pratap Mahesh Rao and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Herein, two novel methods for the flame synthesis of metal oxide nanowire arrays and related nanomaterials are developed and investigated. Both methods are rapid (micrometer/minute axial growth rate), atmospheric, controllable and scalable, and result in highly pure and crystalline materials. Simultaneously, these methods allow the growth of metal oxide nanowires on diverse, technologically relevant, and often delicate substrates. The first method is flame-heated solid phase diffusion growth, in which a metal substrate is rapidly heated to high temperatures by a flame, and metal oxide nanowires grow by metal diffusion out of the substrate in the hot, oxidative post-flame environment. The second is flame vapor deposition, in which the flame oxidizes and evaporates metals at high temperatures to produce large concentrations of oxide vapors that condense onto cooler substrates in the form of nanowires and other nanostructures. In each method, the chemical composition, growth rate and morphology (shape, packing density and alignment) of the nanostructures can be finely controlled by tuning flame parameters such as the fuel/air ratio and temperature, and substrate parameters such as surface energy and temperature. Moreover, an application of flame synthesized nanowires is demonstrated for the first time. As a result of superior morphology (increased length and packing density), the photoelectrochemical water-splitting performance of flame-synthesized tungsten trioxide nanowires is more than twice that of state of the art tungsten trioxide nanowire photoanodes synthesized by conventional hydrothermal and vapor deposition methods. These flame synthesis methods may enable future generations of technologies based on metal oxide nanowires to be developed and deployed on a large scale.

Book Electrochemical water splitting based on metal oxide composite nanostructures

Download or read book Electrochemical water splitting based on metal oxide composite nanostructures written by Aneela Tahira and published by Linköping University Electronic Press. This book was released on 2020-05-14 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: The occurrence of available energy reservoirs is decreasing steeply, therefore we are looking for an alternative and sustainable renewable energy resources. Among them, hydrogen is considered as green fuel with a high density of energy. In nature, hydrogen is not found in a free state and it is most likely present in the compound form for example H2O. Water covers almost 75% of the earth planet. To produce hydrogen from water, it requires an efficient catalyst. For this purpose, noble materials such as Pt, Ir, and Ru are efficient materials for water splitting. These precious catalysts are rare in nature, very costly, and are restricted from largescale applications. Therefore, search for a new earth-abundant and nonprecious materials is a hot spot area in the research today. Among the materials, nanomaterials are excellent candidates because of their potential properties for extended applications, particularly in energy systems. The fabrication of nanostructured materials with high specific surface area, fast charge transport, rich catalytic sites, and huge ion transport is the key challenge for turning nonprecious materials into precious catalytic materials. In this thesis, we have investigated nonprecious nanostructured materials and they are found to be efficient for electrochemical water splitting. These nanostructured materials include MoS2-TiO2, MoS2, TiO2, MoSx@NiO, NiO, nickeliron layered double hydroxide (NiFeLDH)/Co3O4, NiFeLDH, Co3O4, Cu-doped MoS2, Co3O4- CuO, CuO, etc. The composition, morphology, crystalline structure, and phase purities are investigated by a wide range of analytical instruments such as XPS, SEM, HRTEM, and XRD. The production of hydrogen/oxygen from water is obtained either in the acidic or alkaline media. Based on the functional characterization we believe that these newly produced nanostructured materials can be capitalized for the development of water splitting, batteries, and other energy-related devices.

Book Semiconductor Nanowires II  Properties and Applications

Download or read book Semiconductor Nanowires II Properties and Applications written by and published by Academic Press. This book was released on 2016-01-11 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Nanowires: Part B, and Volume 94 in the Semiconductor and Semimetals series, focuses on semiconductor nanowires. Includes experts contributors who review the most important recent literature Contains a broad view, including examination of semiconductor nanowires

Book Investigating Flame based Synthesis of Carbon Nanotubes and Metal oxide Nanowires

Download or read book Investigating Flame based Synthesis of Carbon Nanotubes and Metal oxide Nanowires written by Fusheng Xu and published by . This book was released on 2007 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The synthesis of carbon nanotubes (CNTs) and metal-oxide nanowires (e.g. ZnO, WO2.9) are examined experimentally by inserting probes into various flame geometries at atmospheric pressure. The main probed-flame configurations are the inverse co-flow diffusion flame (IDF) and the counter-flow diffusion flame (CDF), which are compared with each other to assess the translatability of local synthesis conditions in producing the same growth attributes and morphologies. The CDF is characterized using laser-based spontaneous Raman spectroscopy (SRS), and validated with simulations using detailed chemical kinetics and transport. SRS is used to measure local conditions in the 2-D axi-symmetric IDF. Properties of the as-synthesized nanostructures are determined by field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), and resonance Raman spectroscopy (RRS). Various morphologies of CNTs are grown catalytically on metal-alloy substrates of different compositions (i.e., Fe, Fe/Cr, Ni/Cu, Ni/Ti, Ni/Cr, Ni/Cr/Fe), as well as on metal-oxide solid solutions (i.e. NiAl2O4, CoAl2O4 and ZnFe2O4). Vertically well-aligned multi-walled CNTs (MWNTs) with uniform diameters are obtained from Ni/Cr/Fe and Ni/Ti alloys. CNTs produced from ZnFe2O4 substrates are found to be a mixture of MWNTs and single-walled carbon nanotubes (SWNTs) with at least 30% SWNTs by number. Effects of local gas-phase temperature, substrate temperature, carbon-based precursor species concentrations, and substrate voltage bias on CNT formation, diameter, growth rate, yield, density, and morphology are investigated. Aligned single-crystal tungsten oxide nanowires with diameters of 20-50nm are grown directly from tungsten substrates at high rates, with local gas-phase temperature and chemical species specified at the substrate for self-synthesis. Voltage bias is shown to dramatically alter the morphologies of the as-synthesized WOx nanomaterial. Single-crystalline ZnO nanowires are grown directly on zinc-plated steel substrates at high rates with no catalysts. Larger-diameter (>100nm) nanowires are produced at higher temperatures; while smaller-diameter (25-40nm) nanowires are produced at lower temperatures, and only on the fuel side of the reaction zone. Reactions with H2O appear to be the dominant route for nanowire synthesis. Nanoribbons and other nanowire-based morphologies are also found and discussed.

Book Insights Into the Controllable Chemical Composition of Metal Oxide Nanowires and Graphene Aerogels

Download or read book Insights Into the Controllable Chemical Composition of Metal Oxide Nanowires and Graphene Aerogels written by Anna Goldstein and published by . This book was released on 2014 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design and synthesis of materials that absorb visible light and create fuel to store solar energy is a pursuit that has captivated chemists for decades. In order to take part in solar water splitting, i.e. the production of hydrogen and oxygen gas from water and sunlight, electrode materials must fit specific requirements in terms of their electronic structure. Zinc oxide (ZnO) and titanium dioxide (TiO2) are both of interest for their ability to produce oxygen from photogenerated holes, but their band gaps are too large to capture a significant portion of the solar spectrum. We address this challenge by modifying the crystal structures of ZnO and TiO2 to make lower band gap materials. Furthermore, we use nanowires as the synthetic template for these materials because they provide a large semiconductor-liquid interfacial area. ZnO nanowires can be alloyed with In3+, Fe3+ and other trivalent metal ions to form a unique structure with the formula M2O3(ZnO)n, also known as MZO. We synthesize indium zinc oxide (IZO) and indium iron zinc oxide (IFZO) nanowires and study their crystal structure using atomically-resolved transmission electron microscopy (TEM), among other methods. We elucidate a structural model for MZO that resolves inconsistencies in the existing literature, based on the identification of the zigzag layer as an inversion domain boundary. These nanowires are shown to have a lower band gap than ZnO and produce photocurrent under visible light illumination. The solid-state diffusion reaction to form ternary titanates is also studied by TEM. TiO2 nanowires are coated with metal oxides by a variety of deposition methods, and then converted to MTiO3 at high temperatures, where M is a divalent transition metal ion such as Mn2+, Co2+, or Ni2+. When Co3O4 particles attached to TiO2 nanowires are annealed for a short time, we observe the formation of a CoO(111)/TiO2 (010) interface. If the nanowires are instead coated with Co(NO3)2 salt and then annealed briefly, then isolated pockets of MTiO3 are formed on the nanowire surface. This structure retains the conductive channel in the center of the nanowire, which can be useful for charge separation. Longer annealing times result in segmented nanowires; the segments formed from a Ni-coated nanowire are bounded by TiO2(01-1) twin planes and NiTiO3/TiO2{03-1} interfaces. An alternative strategy for storing solar energy takes advantage of the capacitance between a semiconductor surface and adsorbed ions in solution. This type of energy storage device is called an electric double layer capacitor (EDLC). Graphene-based aerogels, which are porous materials composed of few-layer graphitic sheets, have the potential for higher surface area and higher conductivity than standard carbon aerogels. These properties make graphene-based aerogels a good material candidate for EDLC electrodes. Graphene oxide (GO) is the precursor material for the synthesis of a graphene-based aerogel, and it has been widely studied. Yet its hydrothermal gelation is still not fully understood, due to the high pressure reaction conditions and the non-uniform nature of GO. We demonstrate a number of changes that occur to the GO sheets during gelation: wrinkling, formation of a densified monolith, deoxygenation, increasing thermal stability, and color change. Plotting the time evolution of all these properties shows that they are simultaneous and likely of common origin. Possible mechanisms for gelation are explored. Graphene aerogels are synthesized by vapor phase thermal reduction of GO aerogels at temperatures up to 1600 °C. Further deoxygenation is observed in the aerogel during thermal reduction, along with enhanced crystallinity and an associated change in the electronic structure. When graphene aerogels are exposed to high-temperature boron oxide vapor, they are converted to boron nitride (BN) aerogels. The structure of the BN aerogel is investigated and shown to be similar in nanoscale morphology to the precursor graphene aerogel, with largely turbostratic stacking between the atomic layers. BN aerogels are superhydrophilic and thermally stable, allowing them to adsorb oil and then be regenerated by burning in air.

Book Combinatorial Discovery and Optimization of the Composition  Doping and Morphology of New Oxide Semiconductors for Efficient Photoelectrochemical Water Splitting

Download or read book Combinatorial Discovery and Optimization of the Composition Doping and Morphology of New Oxide Semiconductors for Efficient Photoelectrochemical Water Splitting written by and published by . This book was released on 2015 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing need for carbon free energy has focused renewed attention on solar energy conversion. Although photovoltaic cells excel at directly converting of solar energy to electricity, they do not directly produce stored energy or fuels that account for more than 75% of current energy use. Direct photoelectrolysis of water has the advantage of converting solar energy directly to hydrogen, an ideal non-carbon and nonpolluting energy carrier, by replacing both a photovoltaic array and an electrolysis unit with one potentially inexpensive device. Unfortunately no materials are currently known to efficiently photoelectrolyze water that are, efficient, inexpensive and stable under illumination in electrolytes for many years. Nanostructured semiconducting metal oxides could potentially fulfill these requirements, making them the most promising materials for solar water photoelectrolysis, however no oxide semiconductor has yet been discovered with all the required properties. We have developed a simple, high-throughput combinatorial approach to prepare and screen many multi component metal oxides for water photoelectrolysis activity. The approach uses ink jet printing of overlapping patterns of soluble metal oxide precursors onto conductive glass substrates. Subsequent pyrolysis produces metal oxide phases that are screened for photoelectrolysis activity by measuring photocurrents produced by scanning a laser over the printed patterns in aqueous electrolytes. Several promising and unexpected compositions have been identified.

Book Technological Advancement in Clean Energy Production

Download or read book Technological Advancement in Clean Energy Production written by Amritanshu Shukla and published by CRC Press. This book was released on 2024-11-01 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book presents the latest progress into novel forms of clean energy and the lastest progress in the field of green energy and nanomaterials technology with methodologies designed to solve engineering issues. It covers recent advances in theoretical and experimental research on devices that can be used in the production of new types of solar cells and hydrogen generation for pollution control and also examines potential applications to promote green processes and techniques for energy and environment sustainability.

Book Semiconductor Nanostructures for Solar Water Splitting and Hydrogen Production

Download or read book Semiconductor Nanostructures for Solar Water Splitting and Hydrogen Production written by Alireza Kargar and published by . This book was released on 2015 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar and seawater are the ultimate energy resources on earth, and together constitute a potential solution to the energy crisis, which at the same time can reduce the carbon emission due to the use of fossil fuels. However, there are challenges in the generation of hydrogen fuel through water splitting using solar energy, such as the cost, and large scale manufacturing of the efficient and durable photoelectrodes. Primary challenge for solar water splitting using photoelectrochemical (PEC) cells is to develop photoelectrodes with sufficient photovoltage to electrolyze water, with maximized photon utilization efficiency, with long lifetime, and with cheap cost. This thesis then focuses on design, characterization and fabrication of novel nanostructured heterojunctions (with focus on nanowire/nanorod array heterostructures) for solar water splitting and hydrogen production. The primary focus of this thesis is to develop such photoelectrodes using low-cost, earth-abundant, non-toxic materials with cheap, facile, scalable fabrication techniques for efficient and durable solar water splitting in neutral solutions. The formation of the nanostructured array heterojunction offers unique combination of desired properties, such as enhanced light absorption, improved charge separation/collection, enlarged reaction surface area, and better electrochemical reaction dynamics. Two different types of nanostructured array heterojunctions present in this thesis including (i) Si/metal-oxides nanowire array heterojunction photoelectrodes (chapters 2-6), and (ii) all-metal-oxides nanowire/nanorod heterostructure photoelectrodes (chapters 7-8). Two different catalysts for hydrogen or oxygen evolution reaction are presented in chapters 9-10. The application of catalyst is to facilitate the gas evolution on the surface of nanostructured heterojunctions to improve the solar hydrogen production efficiency.

Book Photocatalysis

    Book Details:
  • Author : Suresh C. Pillai
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2021-08-23
  • ISBN : 3110668483
  • Pages : 396 pages

Download or read book Photocatalysis written by Suresh C. Pillai and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-08-23 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a concise and up-to-date introduction to the topic of photocatalysis. It covers the fundamentals of photocatalysis, design of photoreactors and modelling and simulations for photoreaction. Also, industrial applications such as hydrogen production, water disinfection, degradation of air pollutants, pesticides and pharmaceuticals are described.

Book Inorganic Metal Oxide Nanocrystal Photocatalysts for Solar Fuel Generation from Water

Download or read book Inorganic Metal Oxide Nanocrystal Photocatalysts for Solar Fuel Generation from Water written by Troy K. Townsend and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Realizing a method for converting sunlight to renewable fuel may be one of the most important challenges of the century. Water splitting to hydrogen and oxygen gaseous fuels can be powered by the sun using light absorbing catalysts. In the pursuit of cheap, active, and stable catalysts, this dissertation focuses on inorganic metal oxide semiconductor nanocrystals for solar water splitting including their synthesis, characterization and reactivity. The results from this collection of investigations have shed light on the properties of nanomaterials and their light-driven water reduction and oxidation reactions. Chapter 2 shows the effect of cocatalyst deposition onto wide band gap UV-absorbing asymmetric nanoscale niobium oxide crystals. With spatial charge separation in mind, platinum (an electron acceptor and water reducer) and iridium dioxide (a hole scavenger and known water oxidizer) were photodeposited onto H4Nb6O17 crystals to achieve complete water reduction and incomplete water oxidation. In this case, the water oxidation reaction was shown to be confined to a surface-bound peroxide intermediate. Chapter 3 transitions into narrow band gap visible light absorbing Fe2O3 nanocrystal water oxidation catalysts. These materials were synthesized, characterized, visualized with high resolution transmission electron microscopy (HRTEM) and tested for their photocatalytic activity under visible light irradiation while in the presence of aqueous AgNO3, a sacrificial reagent. Chapter 4 describes efforts to advance toward a complete nanoscale water splitting catalyst without reliance on sacrificial reagents. In this case, both half reactions proceed and hydrogen and oxygen are evolved from the solution. Nanoscale SrTiO3 (6.5 nm and 30 nm) was loaded with NiOx and properties were compared with bulk SrTiO3 to elucidate the effects of nanoscaling. Chapter 5 outlines the photogenerated electron/hole pathway in NiOx-STO by specifically loading nickel oxide and/or nickel metal cocatalysts onto bulk SrTiO3 crystals. These materials were tested for water splitting from pure water, and surface photovoltage / electrochemical measurements showed evidence of electron trapping in nickel and hole trapping in nickel oxide, giving rise to a three-component complete water splitter.

Book Photoelectrochemical Hydrogen Production

Download or read book Photoelectrochemical Hydrogen Production written by Roel van de Krol and published by Springer Science & Business Media. This book was released on 2011-11-09 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.

Book Environmental Photochemistry Part III

Download or read book Environmental Photochemistry Part III written by Detlef W. Bahnemann and published by Springer. This book was released on 2015-06-23 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume builds on the previous two editions, Environmental Photochemistry Part I and Part II, which reflect the diverse range of activities in this highly dynamic research field. The chapters cover fundamental topics, from photocatalyst materials, surface-modified materials, reaction kinetics and reactor modelling, to translational research activities on chemical synthesis, energy conversion and water treatment. The applications of the new generation of LED irradiation sources and spectroscopic methods for elucidating reaction pathways are also covered in detail. This new volume maintains the ethos of the previous editions by further contributing to readers’ understanding of photochemical and photocatalytic processes for environmental applications.

Book TiO2 Nanoparticles

    Book Details:
  • Author : Aiguo Wu
  • Publisher : John Wiley & Sons
  • Release : 2020-06-02
  • ISBN : 3527347240
  • Pages : 252 pages

Download or read book TiO2 Nanoparticles written by Aiguo Wu and published by John Wiley & Sons. This book was released on 2020-06-02 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique book that summarizes the properties, toxicology, and biomedical applications of TiO2-based nanoparticles Nanotechnology is becoming increasingly important for products used in our daily lives. Nanometer-sized titanium dioxide (TiO2) are widely used in industry for different purposes, such as painting, sunscreen, printing, cosmetics, biomedicine, and so on. This book summarizes the advances of TiO2 based nanobiotechnology and nanomedicine, covering materials properties, toxicological research, and biomedical application, such as antibacter, biosensing, and cancer theranostics. It uniquely integrates the TiO2 applications from physical properties, toxicology to various biomedical applications, and includes black TiO2 based cancer theranostics. Beginning with a comprehensive introduction to the properties and applications of nanoparticles, TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine offers chapters on: Toxicity of TiO2 Nanoparticles; Antibacterial Applications of TiO2 Nanoparticles; Surface Enhanced Raman Spectrum of TiO2 Nanoparticle for Biosensing (TiO2 Nanoparticle Served as SERS Sensing Substrate); TiO2 as Inorganic Photosensitizer for Photodynamic Therapy; Cancer Theranostics of Black TiO2 Nanoparticles; and Neurodegenerative Disease Diagnostics and Therapy of TiO2-Based Nanoparticles. This title: -Blends the physical properties, toxicology of TiO2 nanoparticles to the many biomedical applications -Includes black TiO2 based cancer theranostics in its coverage -Appeals to a broad audience of researchers in academia and industry working on nanomaterials-based biosensing, drug delivery, nanomedicine TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine is an ideal book for medicinal chemists, analytical chemists, biochemists, materials scientists, toxicologists, and those in the pharmaceutical industry.

Book Metal Oxide Nanostructures

Download or read book Metal Oxide Nanostructures written by Daniela Nunes and published by Elsevier. This book was released on 2018-11-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Nanostructures: Synthesis, Properties and Applications covers the theoretical and experimental aspects related to design, synthesis, fabrication, processing, structural, morphological, optical and electronic properties on the topic. In addition, it reviews surface functionalization and hybrid materials, focusing on the advantages of these oxide nanostructures. The book concludes with the current and future prospective applications of these materials. Users will find a complete overview of all the important topics related to oxide nanostructures, from the physics of the materials, to its application. Delves into hybrid structured metal oxides and their promising use in the next generation of electronic devices Includes fundamental chapters on synthesis design and the properties of metal oxide nanostructures Provides an in-depth overview of novel applications, including chromogenics, electronics and energy

Book Metal Oxides in Energy Technologies

Download or read book Metal Oxides in Energy Technologies written by Yuping Wu and published by Elsevier. This book was released on 2018-10-05 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxides in Energy Technologies provides, for the first time, a look at the wide range of energy applications of metal oxides. Topics covered include metal oxides materials and their applications in batteries, supercapacitors, fuel cells, solar cells, supercapacitors, and much more. The book is written by an experienced author of over 240 papers in peer-reviewed journals who was also been recognized as one of Thomson Reuter’s “World’s Most Influential Scientific Minds in 2015. This book presents a unique work that is ideal for academic researchers and engineers. Presents an authoritative overview on metal oxides in energy technologies as written by an expert author who has published extensively in the area Offers up-to-date coverage of a large, rapidly growing and complex literature Focuses on applications, making it an ideal resource for those who want to apply this knowledge in industry

Book Multifunctional Oxide Based Materials  From Synthesis to Application

Download or read book Multifunctional Oxide Based Materials From Synthesis to Application written by Teofil Jesionowski and published by MDPI. This book was released on 2019-09-03 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with novel aspects and perspectives in metal oxide and hybrid material fabrication. The contributions are mainly focused on the search for a new group of advanced materials with designed physicochemical properties, especially an expanded porous structure and defined surface activity. The proposed technological procedures result in an enhanced activity of the synthesized hybrid materials, which is of great importance when considering their potential fields of application. The use of such materials in different technological disciplines, including aspects associated with environmental protection, allows for the verification of the proposed synthesis method. Thus, it can be stated that those aspects are of interdisciplinary character and may be located at the interface of three scientific disciplines—chemistry, materials science, and engineering—as well as environmental protection. Furthermore, the presented scientific scope is in some way an answer to the continuous demand for such types of materials and opens new perspectives for their practical use