EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Discrete Dynamical Models

Download or read book Discrete Dynamical Models written by Ernesto Salinelli and published by Springer. This book was released on 2014-06-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economics. The exposition is self-contained: some appendices present prerequisites, algorithms and suggestions for computer simulations. The analysis of several examples is enriched by the proposition of many related exercises of increasing difficulty; in the last chapter the detailed solution is given for most of them.

Book A Primer on PDEs

    Book Details:
  • Author : Sandro Salsa
  • Publisher : Springer Science & Business Media
  • Release : 2013-05-13
  • ISBN : 8847028620
  • Pages : 494 pages

Download or read book A Primer on PDEs written by Sandro Salsa and published by Springer Science & Business Media. This book was released on 2013-05-13 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as an advanced undergraduate or a first-year graduate course for students from various disciplines like applied mathematics, physics, engineering. It has evolved while teaching courses on partial differential equations during the last decade at the Politecnico of Milan. The main purpose of these courses was twofold: on the one hand, to train the students to appreciate the interplay between theory and modelling in problems arising in the applied sciences and on the other hand to give them a solid background for numerical methods, such as finite differences and finite elements.

Book Mathematical Analysis II

Download or read book Mathematical Analysis II written by Claudio Canuto and published by Springer. This book was released on 2015-02-07 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, familiarise with the corresponding key techniques and find the proofs of the main results. The second level enables the strongly motivated reader to explore further into the subject, by studying also the material contained in the appendices. Definitions are enriched by many examples, which illustrate the properties discussed. A host of solved exercises complete the text, at least half of which guide the reader to the solution. This new edition features additional material with the aim of matching the widest range of educational choices for a second course of Mathematical Analysis.

Book Logic  a Brief Course

    Book Details:
  • Author : Daniele Mundici
  • Publisher : Springer Science & Business Media
  • Release : 2012-03-29
  • ISBN : 8847023610
  • Pages : 132 pages

Download or read book Logic a Brief Course written by Daniele Mundici and published by Springer Science & Business Media. This book was released on 2012-03-29 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This short book, geared towards undergraduate students of computer science and mathematics, is specifically designed for a first course in mathematical logic. A proof of Gödel's completeness theorem and its main consequences is given using Robinson's completeness theorem and Gödel's compactness theorem for propositional logic. The reader will familiarize himself with many basic ideas and artifacts of mathematical logic: a non-ambiguous syntax, logical equivalence and consequence relation, the Davis-Putnam procedure, Tarski semantics, Herbrand models, the axioms of identity, Skolem normal forms, nonstandard models and, interestingly enough, proofs and refutations viewed as graphic objects. The mathematical prerequisites are minimal: the book is accessible to anybody having some familiarity with proofs by induction. Many exercises on the relationship between natural language and formal proofs make the book also interesting to a wide range of students of philosophy and linguistics.

Book Groups

    Book Details:
  • Author : Antonio Machì
  • Publisher : Springer Science & Business Media
  • Release : 2012-04-05
  • ISBN : 8847024218
  • Pages : 385 pages

Download or read book Groups written by Antonio Machì and published by Springer Science & Business Media. This book was released on 2012-04-05 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Groups are a means of classification, via the group action on a set, but also the object of a classification. How many groups of a given type are there, and how can they be described? Hölder’s program for attacking this problem in the case of finite groups is a sort of leitmotiv throughout the text. Infinite groups are also considered, with particular attention to logical and decision problems. Abelian, nilpotent and solvable groups are studied both in the finite and infinite case. Permutation groups and are treated in detail; their relationship with Galois theory is often taken into account. The last two chapters deal with the representation theory of finite group and the cohomology theory of groups; the latter with special emphasis on the extension problem. The sections are followed by exercises; hints to the solution are given, and for most of them a complete solution is provided.

Book Solving Numerical PDEs  Problems  Applications  Exercises

Download or read book Solving Numerical PDEs Problems Applications Exercises written by Luca Formaggia and published by Springer Science & Business Media. This book was released on 2012-04-05 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book stems from the long standing teaching experience of the authors in the courses on Numerical Methods in Engineering and Numerical Methods for Partial Differential Equations given to undergraduate and graduate students of Politecnico di Milano (Italy), EPFL Lausanne (Switzerland), University of Bergamo (Italy) and Emory University (Atlanta, USA). It aims at introducing students to the numerical approximation of Partial Differential Equations (PDEs). One of the difficulties of this subject is to identify the right trade-off between theoretical concepts and their actual use in practice. With this collection of examples and exercises we try to address this issue by illustrating "academic" examples which focus on basic concepts of Numerical Analysis as well as problems derived from practical application which the student is encouraged to formalize in terms of PDEs, analyze and solve. The latter examples are derived from the experience of the authors in research project developed in collaboration with scientists of different fields (biology, medicine, etc.) and industry. We wanted this book to be useful both to readers more interested in the theoretical aspects and those more concerned with the numerical implementation.

Book Partial Differential Equations in Action

Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-05-30 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents problems and exercises at various levels of difficulty in the following areas: Classical Methods in PDEs (diffusion, waves, transport, potential equations); Basic Functional Analysis and Distribution Theory; Variational Formulation of Elliptic Problems; and Weak Formulation for Parabolic Problems and for the Wave Equation. Thanks to the broad variety of exercises with complete solutions, it can be used in all basic and advanced PDE courses.

Book Curves and Surfaces

    Book Details:
  • Author : M. Abate
  • Publisher : Springer Science & Business Media
  • Release : 2012-06-11
  • ISBN : 8847019419
  • Pages : 407 pages

Download or read book Curves and Surfaces written by M. Abate and published by Springer Science & Business Media. This book was released on 2012-06-11 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of parametrized plane and space curves (curves in n-dimensional space are discussed in the complementary material): curvature, torsion, Frenet’s formulas and the fundamental theorem of the local theory of curves. Then, after a self-contained presentation of degree theory for continuous self-maps of the circumference, we study the global theory of plane curves, introducing winding and rotation numbers, and proving the Jordan curve theorem for curves of class C2, and Hopf theorem on the rotation number of closed simple curves. The local theory of surfaces begins with a comparison of the concept of parametrized (i.e., immersed) surface with the concept of regular (i.e., embedded) surface. We then develop the basic differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivations on germs of differentiable functions; we shall consistently use both approaches in the whole book) and orientation. Next we study the several notions of curvature on a surface, stressing both the geometrical meaning of the objects introduced and the algebraic/analytical methods needed to study them via the Gauss map, up to the proof of Gauss’ Teorema Egregium. Then we introduce vector fields on a surface (flow, first integrals, integral curves) and geodesics (definition, basic properties, geodesic curvature, and, in the complementary material, a full proof of minimizing properties of geodesics and of the Hopf-Rinow theorem for surfaces). Then we shall present a proof of the celebrated Gauss-Bonnet theorem, both in its local and in its global form, using basic properties (fully proved in the complementary material) of triangulations of surfaces. As an application, we shall prove the Poincaré-Hopf theorem on zeroes of vector fields. Finally, the last chapter will be devoted to several important results on the global theory of surfaces, like for instance the characterization of surfaces with constant Gaussian curvature, and the orientability of compact surfaces in R3.

Book Real Algebraic Geometry

    Book Details:
  • Author : Vladimir I. Arnold
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-15
  • ISBN : 3642362435
  • Pages : 113 pages

Download or read book Real Algebraic Geometry written by Vladimir I. Arnold and published by Springer Science & Business Media. This book was released on 2013-04-15 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images. At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th problem (from his list of 23 problems left over from the nineteenth century as a legacy for the twentieth century). In spite of the simplicity and importance of this problem (including its numerous applications), it remains unsolved to this day (although, as you will now see, many remarkable results have been discovered).

Book Algebra for Symbolic Computation

Download or read book Algebra for Symbolic Computation written by Antonio Machi and published by Springer Science & Business Media. This book was released on 2012-07-10 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with several topics in algebra useful for computer science applications and the symbolic treatment of algebraic problems, pointing out and discussing their algorithmic nature. The topics covered range from classical results such as the Euclidean algorithm, the Chinese remainder theorem, and polynomial interpolation, to p-adic expansions of rational and algebraic numbers and rational functions, to reach the problem of the polynomial factorisation, especially via Berlekamp’s method, and the discrete Fourier transform. Basic algebra concepts are revised in a form suited for implementation on a computer algebra system.

Book Rivista Di Fisica  Matematica E Scienze Naturali

Download or read book Rivista Di Fisica Matematica E Scienze Naturali written by and published by . This book was released on 1910 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Discrete Models Of Fluid Dynamics

Download or read book Discrete Models Of Fluid Dynamics written by A S Alves and published by World Scientific. This book was released on 1991-04-30 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments of discrete methods of fluid dynamics, particularly the two most relevant aspects: the “half” discrete case — discrete Boltzmann equation; and the “totally” discrete one — lattice gas were discussed. Both the conceptual and numerical significance of these discrete models were covered as well as the mathematical problems which arise from them. This Colloquium is the third of a series initiated in Santa Fe (USA 1986) the second having taken place in Torino (Italy 1988).

Book Continuum Models And Discrete Systems   Proceedings Of The Eighth International Symposium

Download or read book Continuum Models And Discrete Systems Proceedings Of The Eighth International Symposium written by Konstantin Z Markov and published by World Scientific. This book was released on 1996-01-15 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this symposium is to bring together scientists working on continuum theories of discrete mechanical and thermodynamical systems in the realm of mathematics, theoretical and applied mechanics, physics, material science and engineering. It aims to join together the divergent languages, questions and methods developed in the respective disciplines and to stimulate broad interdisciplinary exchange of ideas and results. The main topics, discussed in the lectures, concern thermodynamics, transport theory, statistical mechanics; continuum mechanics of complex fluids and deformable solids with microstructure; continuum theory of living structures; defect dynamics, synergetics, solitons, coherent structures; dislocations and plasticity; fundamentals of fracture mechanics.

Book Discrete Geometry and Mathematical Morphology

Download or read book Discrete Geometry and Mathematical Morphology written by Sara Brunetti and published by Springer Nature. This book was released on with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Revista de la Uni  n Matem  tica Argentina

Download or read book Revista de la Uni n Matem tica Argentina written by and published by . This book was released on 2007 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fluid Dynamic Applications Of The Discrete Boltzmann Equation

Download or read book Fluid Dynamic Applications Of The Discrete Boltzmann Equation written by Roberto Monaco and published by World Scientific. This book was released on 1991-11-15 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents applications to several fluid dynamics problems in both the bounded and unbounded domains in the framework of the discrete velocity models of kinetic theory. The proposition of new models for dense gases, gases with multi-components, and gases with chemical reactions are also included. This is an up-to-date book on the applications of the discrete Boltzmann equation.