EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Methods for Optimal Control Problems with State Constraints

Download or read book Numerical Methods for Optimal Control Problems with State Constraints written by Radoslaw Pytlak and published by Springer Science & Business Media. This book was released on 1999-08-19 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: While optimality conditions for optimal control problems with state constraints have been extensively investigated in the literature the results pertaining to numerical methods are relatively scarce. This book fills the gap by providing a family of new methods. Among others, a novel convergence analysis of optimal control algorithms is introduced. The analysis refers to the topology of relaxed controls only to a limited degree and makes little use of Lagrange multipliers corresponding to state constraints. This approach enables the author to provide global convergence analysis of first order and superlinearly convergent second order methods. Further, the implementation aspects of the methods developed in the book are presented and discussed. The results concerning ordinary differential equations are then extended to control problems described by differential-algebraic equations in a comprehensive way for the first time in the literature.

Book Numerical Methods for Optimal Control Problems with State Constraints

Download or read book Numerical Methods for Optimal Control Problems with State Constraints written by Radoslaw Pytlak and published by Springer. This book was released on 2006-11-14 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: While optimality conditions for optimal control problems with state constraints have been extensively investigated in the literature the results pertaining to numerical methods are relatively scarce. This book fills the gap by providing a family of new methods. Among others, a novel convergence analysis of optimal control algorithms is introduced. The analysis refers to the topology of relaxed controls only to a limited degree and makes little use of Lagrange multipliers corresponding to state constraints. This approach enables the author to provide global convergence analysis of first order and superlinearly convergent second order methods. Further, the implementation aspects of the methods developed in the book are presented and discussed. The results concerning ordinary differential equations are then extended to control problems described by differential-algebraic equations in a comprehensive way for the first time in the literature.

Book First Order and Second Order Numerical Methods for Optimal Control Problems

Download or read book First Order and Second Order Numerical Methods for Optimal Control Problems written by A. Miele and published by . This book was released on 1979 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lecture summarizes recent advances in the area of numerical methods for optimal control problems, with particular emphasis on the work performed by the Aero-Astronautics Group of Rice University. The following basic problems are considered; problems with general boundary conditions, problem with nondifferential constraints, and problem with multiple subarcs. First-order alogrithms are reviewed, in particular, the sequential ordinary gradient-restoration algorithm and the sequential conjugate gradient-restoration algorithm. Second-order algorithms are also reviewed, in particular, the modified quasilinearization algorithm. Here, the optimal initial choice of the multipliers is discussed. Transformation techniques are presented by means of which a great variety of problems of optimal control can be reduced to one of the formulations presented. Specifically, the following topics are treated; time normalization, free initial state, problems with bounded control, problems with bounded state, and Chebyshev minimax problems. (Author).

Book Optimal Control of Partial Differential Equations

Download or read book Optimal Control of Partial Differential Equations written by Fredi Tröltzsch and published by American Mathematical Society. This book was released on 2024-03-21 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equations, quadratic cost functions and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Tröltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization.

Book Numerical Methods for Optimal Control Problems

Download or read book Numerical Methods for Optimal Control Problems written by Maurizio Falcone and published by Springer. This book was released on 2019-01-26 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents recent mathematical methods in the area of optimal control with a particular emphasis on the computational aspects and applications. Optimal control theory concerns the determination of control strategies for complex dynamical systems, in order to optimize some measure of their performance. Started in the 60's under the pressure of the "space race" between the US and the former USSR, the field now has a far wider scope, and embraces a variety of areas ranging from process control to traffic flow optimization, renewable resources exploitation and management of financial markets. These emerging applications require more and more efficient numerical methods for their solution, a very difficult task due the huge number of variables. The chapters of this volume give an up-to-date presentation of several recent methods in this area including fast dynamic programming algorithms, model predictive control and max-plus techniques. This book is addressed to researchers, graduate students and applied scientists working in the area of control problems, differential games and their applications.

Book Optimal Control

    Book Details:
  • Author : Bulirsch
  • Publisher : Birkhäuser
  • Release : 2013-03-08
  • ISBN : 3034875398
  • Pages : 352 pages

Download or read book Optimal Control written by Bulirsch and published by Birkhäuser. This book was released on 2013-03-08 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Optimal Control" reports on new theoretical and practical advances essential for analysing and synthesizing optimal controls of dynamical systems governed by partial and ordinary differential equations. New necessary and sufficient conditions for optimality are given. Recent advances in numerical methods are discussed. These have been achieved through new techniques for solving large-sized nonlinear programs with sparse Hessians, and through a combination of direct and indirect methods for solving the multipoint boundary value problem. The book also focuses on the construction of feedback controls for nonlinear systems and highlights advances in the theory of problems with uncertainty. Decomposition methods of nonlinear systems and new techniques for constructing feedback controls for state- and control constrained linear quadratic systems are presented. The book offers solutions to many complex practical optimal control problems.

Book Computational Methods in Optimal Control Problems

Download or read book Computational Methods in Optimal Control Problems written by I.H. Mufti and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this modest report is to present in a simplified manner some of the computational methods that have been developed in the last ten years for the solution of optimal control problems. Only those methods that are based on the minimum (maximum) principle of Pontriagin are discussed here. The autline of the report is as follows: In the first two sections a control problem of Bolza is formulated and the necessary conditions in the form of the minimum principle are given. The method of steepest descent and a conjugate gradient-method are dis cussed in Section 3. In the remaining sections, the successive sweep method, the Newton-Raphson method and the generalized Newton-Raphson method (also called quasilinearization method) ar~ presented from a unified approach which is based on the application of Newton Raphson approximation to the necessary conditions of optimality. The second-variation method and other shooting methods based on minimizing an error function are also considered. TABLE OF CONTENTS 1. 0 INTRODUCTION 1 2. 0 NECESSARY CONDITIONS FOR OPTIMALITY •••••••• 2 3. 0 THE GRADIENT METHOD 4 3. 1 Min H Method and Conjugate Gradient Method •. •••••••••. . . . ••••••. ••••••••. • 8 3. 2 Boundary Constraints •••••••••••. ••••. • 9 3. 3 Problems with Control Constraints ••. •• 15 4. 0 SUCCESSIVE SWEEP METHOD •••••••••••••••••••• 18 4. 1 Final Time Given Implicitly ••••. •••••• 22 5. 0 SECOND-VARIATION METHOD •••••••••••••••••••• 23 6. 0 SHOOTING METHODS ••••••••••••••••••••••••••• 27 6. 1 Newton-Raphson Method ••••••••••••••••• 27 6.

Book Numerical Methods for Large Scale Linear Time Varying Control Systems and related Differential Matrix Equations

Download or read book Numerical Methods for Large Scale Linear Time Varying Control Systems and related Differential Matrix Equations written by Norman Lang and published by Logos Verlag Berlin GmbH. This book was released on 2018 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is concerned with the linear-quadratic optimal control and model order reduction (MOR) of large-scale linear time-varying (LTV) control systems. In the first two parts, particular attention is paid to a tracking-type finite-time optimal control problem with application to an inverse heat conduction problem and the balanced truncation (BT) MOR method for LTV systems. In both fields of application the efficient solution of differential matrix equations (DMEs) is of major importance. The third and largest part deals with the application of implicit time integration methods to these matrix-valued ordinary differential equations. In this context, in particular, the rather new class of peer methods is introduced. Further, for the efficient solution of large-scale DMEs, in practice low-rank solution strategies are inevitable. Here, low-rank time integrators, based on a symmetric indefinte factored representation of the right hand sides and the solution approximations of the DMEs, are presented. In contrast to the classical low-rank Cholesky-type factorization, this avoids complex arithmetic and tricky implementations and algorithms. Both low-rank approaches are compared for numerous implicit time integration methods.

Book New Computational Methods for Optimal Control of Partial Differential Equations

Download or read book New Computational Methods for Optimal Control of Partial Differential Equations written by Jun Liu and published by . This book was released on 2015 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations are the chief means of providing mathematical models in science, engineering and other fields. Optimal control of partial differential equations (PDEs) has tremendous applications in engineering and science, such as shape optimization, image processing, fluid dynamics, and chemical processes. In this thesis, we develop and analyze several efficient numerical methods for the optimal control problems governed by elliptic PDE, parabolic PDE, and wave PDE, respectively. The thesis consists of six chapters. In Chapter 1, we briefly introduce a few motivating applications and summarize some theoretical and computational foundations of our following developed approaches. In Chapter 2, we establish a new multigrid algorithm to accelerate the semi-smooth Newton method that is applied to the first-order necessary optimality system arising from semi-linear control-constrained elliptic optimal control problems. Under suitable assumptions, the discretized Jacobian matrix is proved to have a uniformly bounded inverse with respect to mesh size. Different from current available approaches, a new strategy that leads to a robust multigrid solver is employed to define the coarse grid operator. Numerical simulations are provided to illustrate the efficiency of the proposed method, which shows to be computationally more efficient than the popular full approximation storage (FAS) multigrid method. In particular, our proposed approach achieves a mesh-independent convergence and its performance is highly robust with respect to the regularization parameter. In Chaper 3, we present a new second-order leapfrog finite difference scheme in time for solving the first-order necessary optimality system of the linear parabolic optimal control problems. The new leapfrog scheme is shown to be unconditionally stable and it provides a second-order accuracy, while the classical leapfrog scheme usually is well-known to be unstable. A mathematical proof for the convergence of the proposed scheme is provided under a suitable norm. Moreover, the proposed leapfrog scheme gives a favorable structure that leads to an effective implementation of a fast solver under the multigrid framework. Numerical examples show that the proposed scheme significantly outperforms the widely used second-order backward time differentiation approach, and the resultant fast solver demonstrates a mesh-independent convergence as well as a linear time complexity. In Chapter 4, we develop a new semi-smooth Newton multigrid algorithm for solving the discretized first-order necessary optimality system that characterizes the optimal solution of semi-linear parabolic PDE optimal control problems with control constraints. A new leapfrog discretization scheme in time associated with the standard five-point stencil in space is established to achieve a second-order accuracy. The convergence (or unconditional stability) of the proposed scheme is proved when time-periodic solutions are considered. Moreover, the derived well-structured discretized Jacobian matrices greatly facilitate the development of an effective smoother in our multigrid algorithm. Numerical simulations are provided to illustrate the effectiveness of the proposed method, which validates the second-order accuracy in solution approximations as well as the optimal linear complexity of computing time. In Chapter 5, we offer a new implicit finite difference scheme in time for solving the first-order necessary optimality system arising in optimal control of wave equations. With a five-point central finite difference scheme in space, the full discretization is proved to be unconditionally convergent with a second-order accuracy, which is not restricted by the classical Courant-Friedrichs-Lewy (CFL) stability condition on the spatial and temporal step sizes. Moreover, based on its advantageous developed structure, an efficient preconditioned Krylov subspace method is provided and analyzed for solving the discretized sparse linear system. Numerical examples are presented to confirm our theoretical conclusions and demonstrate the promising performance of proposed preconditioned iterative solver. Finally, brief summaries and future research perspectives are given in Chapter 6.

Book Optimal Control of Partial Differential Equations Involving Pointwise State Constraints  Regularization and Applications

Download or read book Optimal Control of Partial Differential Equations Involving Pointwise State Constraints Regularization and Applications written by Irwin Yousept and published by Cuvillier Verlag. This book was released on 2008 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Derivatives and Nonlinear Analysis

Download or read book Numerical Derivatives and Nonlinear Analysis written by Harriet Kagiwada and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many years it has been an article of faith of numerical analysts that the evaluation of derivatives of complicated functions should be avoided. Derivatives were evaluated using finite differences or, more recently, using symbolic manipulation packages. The first has the disadvantage of limited accuracy. The second has disadvantages of being expensive and requiring considerable computer memory. The recent developments described in this text allow the evaluation of derivatives using simple automatic derivative evaluation subroutines pro grammed in FORTRAN or BASIC. These subroutines can even be programmed on a personal computer. The concept for the evaluation of the derivatives was originally developed by Wengert over 20 years ago. Significant im provements have been made in Wengert's method and are utilized in this text. The purpose of this text is to familiarize computer users with a simple and practical method for obtaining the partial derivatives of complicated mathematical expressions. The text illustrates the use of automatic deriva tive evaluation subroutines to solve a wide range of nonlinear least-squares, optimal control, system identification, two-point boundary value problems, and integral equations. The numerical values of the derivatives are evalu~ ated exactly, except for roundoff, using simple FORTRAN or BASIC sub routines. These derivatives are derived automatically behind the scenes, from the equivalent of analytical expressions, without any effort from the user. The use of costly software packages is not required.

Book Memory Efficient Approaches of Second Order for Optimal Control Problems

Download or read book Memory Efficient Approaches of Second Order for Optimal Control Problems written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Consider a time-dependent optimal control problem, where the state evolution is described by an initial value problem. There are a variety of numerical methods to solve these problems. The so-called indirect approach is considered detailed in this thesis. The indirect methods solve decoupled boundary value problems resulting from the necessary conditions for the optimal control problem. The so-called Pantoja method describes a computationally efficient stage-wise construction of the Newton direction for the discrete-time optimal control problem. There are many relationships between multiple shooting techniques and Pantoja method, which are investigated in this thesis. In this context, the equivalence of Pantoja method and multiple shooting method of Riccati type is shown. Moreover, Pantoja method is extended to the case where the state equations are discretised using one of implicit numerical methods. Furthermore, the concept of symplecticness and Hamiltonian systems is introduced. In this regard, a suitable numerical method is presented, which can be applied to unconstrained optimal control problems. It is proved that this method is a symplectic one. The iterative solution of optimal control problems in ordinary differential equations by Pantoja or Riccati equivalent methods leads to a succession of triple sweeps through the discretised time interval. The second (adjoint) sweep relies on information from the first (original) sweep, and the third (final) sweep depends on both of them. Typically, the steps on the adjoint sweep involve more operations and require more storage than the other two. The key difficulty is given by the enormous amount of memory required for the implementation of these methods if all states throughout forward and adjoint sweeps are stored. One of goals of this thesis is to present checkpointing techniques for memory reduced implementation of these methods. For this purpose, the well known aspect of checkpointing has to be extended to a `nest.

Book Numerical Methods for Linear Control Systems

Download or read book Numerical Methods for Linear Control Systems written by Biswa Datta and published by Academic Press. This book was released on 2004 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Linear Control Systems Design and Analysis is an interdisciplinary textbook aimed at systematic descriptions and implementations of numerically-viable algorithms based on well-established, efficient and stable modern numerical linear techniques for mathematical problems arising in the design and analysis of linear control systems both for the first- and second-order models. Unique coverage of modern mathematical concepts such as parallel computations, second-order systems, and large-scale solutions Background material in linear algebra, numerical linear algebra, and control theory included in text Step-by-step explanations of the algorithms and examples

Book Applied Optimal Control

Download or read book Applied Optimal Control written by A. E. Bryson and published by Routledge. This book was released on 2018-05-04 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This best-selling text focuses on the analysis and design of complicated dynamics systems. CHOICE called it ""a high-level, concise book that could well be used as a reference by engineers, applied mathematicians, and undergraduates. The format is good, the presentation clear, the diagrams instructive, the examples and problems helpful...References and a multiple-choice examination are included.

Book Numerical Methods for Initial Value Problems in Ordinary Differential Equations

Download or read book Numerical Methods for Initial Value Problems in Ordinary Differential Equations written by Simeon Ola Fatunla and published by Academic Press. This book was released on 2014-05-10 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Method for Initial Value Problems in Ordinary Differential Equations deals with numerical treatment of special differential equations: stiff, stiff oscillatory, singular, and discontinuous initial value problems, characterized by large Lipschitz constants. The book reviews the difference operators, the theory of interpolation, first integral mean value theorem, and numerical integration algorithms. The text explains the theory of one-step methods, the Euler scheme, the inverse Euler scheme, and also Richardson's extrapolation. The book discusses the general theory of Runge-Kutta processes, including the error estimation, and stepsize selection of the R-K process. The text evaluates the different linear multistep methods such as the explicit linear multistep methods (Adams-Bashforth, 1883), the implicit linear multistep methods (Adams-Moulton scheme, 1926), and the general theory of linear multistep methods. The book also reviews the existing stiff codes based on the implicit/semi-implicit, singly/diagonally implicit Runge-Kutta schemes, the backward differentiation formulas, the second derivative formulas, as well as the related extrapolation processes. The text is intended for undergraduates in mathematics, computer science, or engineering courses, andfor postgraduate students or researchers in related disciplines.

Book Practical Methods for Optimal Control and Estimation Using Nonlinear Programming

Download or read book Practical Methods for Optimal Control and Estimation Using Nonlinear Programming written by John T. Betts and published by SIAM. This book was released on 2010-01-01 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: A focused presentation of how sparse optimization methods can be used to solve optimal control and estimation problems.

Book Numerical Methods for Ordinary Differential Equations

Download or read book Numerical Methods for Ordinary Differential Equations written by J. C. Butcher and published by John Wiley & Sons. This book was released on 2016-07-11 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this classic work, comprehensively revised to present exciting new developments in this important subject The study of numerical methods for solving ordinary differential equations is constantly developing and regenerating, and this third edition of a popular classic volume, written by one of the world’s leading experts in the field, presents an account of the subject which reflects both its historical and well-established place in computational science and its vital role as a cornerstone of modern applied mathematics. In addition to serving as a broad and comprehensive study of numerical methods for initial value problems, this book contains a special emphasis on Runge-Kutta methods by the mathematician who transformed the subject into its modern form dating from his classic 1963 and 1972 papers. A second feature is general linear methods which have now matured and grown from being a framework for a unified theory of a wide range of diverse numerical schemes to a source of new and practical algorithms in their own right. As the founder of general linear method research, John Butcher has been a leading contributor to its development; his special role is reflected in the text. The book is written in the lucid style characteristic of the author, and combines enlightening explanations with rigorous and precise analysis. In addition to these anticipated features, the book breaks new ground by including the latest results on the highly efficient G-symplectic methods which compete strongly with the well-known symplectic Runge-Kutta methods for long-term integration of conservative mechanical systems. This third edition of Numerical Methods for Ordinary Differential Equations will serve as a key text for senior undergraduate and graduate courses in numerical analysis, and is an essential resource for research workers in applied mathematics, physics and engineering.