Download or read book A First Course in Numerical Methods written by Uri M. Ascher and published by SIAM. This book was released on 2011-07-14 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers students a practical knowledge of modern techniques in scientific computing.
Download or read book Numerical Methods in Scientific Computing written by Germund Dahlquist and published by SIAM. This book was released on 2008-01-01 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book from the authors of the classic book Numerical methods addresses the increasingly important role of numerical methods in science and engineering. More cohesive and comprehensive than any other modern textbook in the field, it combines traditional and well-developed topics with other material that is rarely found in numerical analysis texts, such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions. Although this volume is self-contained, more comprehensive treatments of matrix computations will be given in a forthcoming volume. A supplementary Website contains three appendices: an introduction to matrix computations; a description of Mulprec, a MATLAB multiple precision package; and a guide to literature, algorithms, and software in numerical analysis. Review questions, problems, and computer exercises are also included. For use in an introductory graduate course in numerical analysis and for researchers who use numerical methods in science and engineering.
Download or read book A First Course in Computational Physics written by Paul DeVries and published by Jones & Bartlett Learning. This book was released on 2011-01-28 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computers and computation are extremely important components of physics and should be integral parts of a physicist’s education. Furthermore, computational physics is reshaping the way calculations are made in all areas of physics. Intended for the physics and engineering students who have completed the introductory physics course, A First Course in Computational Physics, Second Edition covers the different types of computational problems using MATLAB with exercises developed around problems of physical interest. Topics such as root finding, Newton-Cotes integration, and ordinary differential equations are included and presented in the context of physics problems. A few topics rarely seen at this level such as computerized tomography, are also included. Within each chapter, the student is led from relatively elementary problems and simple numerical approaches through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. The goal is to demonstrate how numerical methods are used to solve the problems that physicists face. Read the review published in Computing in Science & Engineering magazine, March/April 2011 (Vol. 13, No. 2) ? 2011 IEEE, Published by the IEEE Computer Society
Download or read book Numerical Methods for Conservation Laws written by Jan S. Hesthaven and published by SIAM. This book was released on 2018-01-30 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.
Download or read book A First Course in Scientific Computing written by Rubin Landau and published by Princeton University Press. This book was released on 2011-10-30 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a new approach to introductory scientific computing. It aims to make students comfortable using computers to do science, to provide them with the computational tools and knowledge they need throughout their college careers and into their professional careers, and to show how all the pieces can work together. Rubin Landau introduces the requisite mathematics and computer science in the course of realistic problems, from energy use to the building of skyscrapers to projectile motion with drag. He is attentive to how each discipline uses its own language to describe the same concepts and how computations are concrete instances of the abstract. Landau covers the basics of computation, numerical analysis, and programming from a computational science perspective. The first part of the printed book uses the problem-solving environment Maple as its context, with the same material covered on the accompanying CD as both Maple and Mathematica programs; the second part uses the compiled language Java, with equivalent materials in Fortran90 on the CD; and the final part presents an introduction to LaTeX replete with sample files. Providing the essentials of computing, with practical examples, A First Course in Scientific Computing adheres to the principle that science and engineering students learn computation best while sitting in front of a computer, book in hand, in trial-and-error mode. Not only is it an invaluable learning text and an essential reference for students of mathematics, engineering, physics, and other sciences, but it is also a consummate model for future textbooks in computational science and engineering courses. A broad spectrum of computing tools and examples that can be used throughout an academic career Practical computing aimed at solving realistic problems Both symbolic and numerical computations A multidisciplinary approach: science + math + computer science Maple and Java in the book itself; Mathematica, Fortran90, Maple and Java on the accompanying CD in an interactive workbook format
Download or read book A First Course in the Numerical Analysis of Differential Equations written by A. Iserles and published by Cambridge University Press. This book was released on 2009 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Download or read book Fundamentals of Engineering Numerical Analysis written by Parviz Moin and published by Cambridge University Press. This book was released on 2010-08-23 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.
Download or read book Numerical Methods that Work written by Forman S. Acton and published by American Mathematical Soc.. This book was released on 2020-07-31 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Numerical Computation in Science and Engineering written by C. Pozrikidis and published by Oxford University Press on Demand. This book was released on 2008 with total page 1251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for the non-expert student, enthusiast, or researcher, this text provides an accessible introduction to numerical computation and its applications in science and engineering. It assumes no prior knowledge beyond undergraduate calculus and elementary computer programming. Fundamental and practical issues are discussed in a unified manner with a generous, but not excessive, dose of numerical analysis. Topics are introduced on a need to know basis to concisely illustrate the practical implementation of a variety of algorithms and demystify seemingly esoteric numerical methods. Algorithms that can be explained without too much elaboration and can be implemented within a few dozen lines of computer code are discussed in detail, and computer programs in Fortran, C++, and Matlab are provided. Algorithms whose underlying theories require long, elaborate explanations are discussed at the level of first principles, and references for further information are given. The book uses numerous schematic illustrations to demonstrate concepts and facilitate their understanding by providing readers with a helpful interplay between ideas and visual images. Real-world examples drawn from various branches of science and engineering are presented. Updated information on computer technology and numerical methods is included, many new and some original topics are introduced. Additional solved and unsolved problems are included.
Download or read book Numerical Analysis and Scientific Computation written by Jeffery J. Leader and published by Addison-Wesley Longman. This book was released on 2004 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is intended for a first course in Numerical Analysis taken by students majoring in mathematics, engineering, computer science, and the sciences. This text emphasizes the mathematical ideas behind the methods and the idea of mixing methods for robustness. The optional use of MATLAB is incorporated throughout the text.
Download or read book Scientific Computing written by Michael T. Heath and published by SIAM. This book was released on 2018-11-14 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.
Download or read book A First Course in Atmospheric Numerical Modeling written by Alex Joseph DeCaria and published by . This book was released on 2014-05-01 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written for advanced undergraduates and graduates in atmospheric science. It introduces students to the essentials of finite-difference methods, numerical stability, spectral methods, data assimilation and initialization, boundary conditions, and parameterization of subgrid-scale phenomenon. It also covers more advanced topics such as finite-volume methods, semi-Lagrangian and semi-implicit schemes, and chemical transport modeling. Practical programming and written exercises are included.
Download or read book Introduction to Applied Numerical Analysis written by Richard W. Hamming and published by Courier Corporation. This book was released on 2012-01-01 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is appropriate for an applied numerical analysis course for upper-level undergraduate and graduate students as well as computer science students. Actual programming is not covered, but an extensive range of topics includes round-off and function evaluation, real zeros of a function, integration, ordinary differential equations, optimization, orthogonal functions, Fourier series, and much more. 1989 edition"--Provided by publisher.
Download or read book An Introduction to Programming and Numerical Methods in MATLAB written by Steve Otto and published by Springer Science & Business Media. This book was released on 2005-12-06 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: An elementary first course for students in mathematics and engineering Practical in approach: examples of code are provided for students to debug, and tasks – with full solutions – are provided at the end of each chapter Includes a glossary of useful terms, with each term supported by an example of the syntaxes commonly encountered
Download or read book Numerical Analysis in Modern Scientific Computing written by Peter Deuflhard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the main topics of modern numerical analysis: sequence of linear equations, error analysis, least squares, nonlinear systems, symmetric eigenvalue problems, three-term recursions, interpolation and approximation, large systems and numerical integrations. The presentation draws on geometrical intuition wherever appropriate and is supported by a large number of illustrations, exercises, and examples.
Download or read book Introduction to Numerical Programming written by Titus A. Beu and published by CRC Press. This book was released on 2014-09-03 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Makes Numerical Programming More Accessible to a Wider Audience Bearing in mind the evolution of modern programming, most specifically emergent programming languages that reflect modern practice, Numerical Programming: A Practical Guide for Scientists and Engineers Using Python and C/C++ utilizes the author’s many years of practical research and teaching experience to offer a systematic approach to relevant programming concepts. Adopting a practical, broad appeal, this user-friendly book offers guidance to anyone interested in using numerical programming to solve science and engineering problems. Emphasizing methods generally used in physics and engineering—from elementary methods to complex algorithms—it gradually incorporates algorithmic elements with increasing complexity. Develop a Combination of Theoretical Knowledge, Efficient Analysis Skills, and Code Design Know-How The book encourages algorithmic thinking, which is essential to numerical analysis. Establishing the fundamental numerical methods, application numerical behavior and graphical output needed to foster algorithmic reasoning, coding dexterity, and a scientific programming style, it enables readers to successfully navigate relevant algorithms, understand coding design, and develop efficient programming skills. The book incorporates real code, and includes examples and problem sets to assist in hands-on learning. Begins with an overview on approximate numbers and programming in Python and C/C++, followed by discussion of basic sorting and indexing methods, as well as portable graphic functionality Contains methods for function evaluation, solving algebraic and transcendental equations, systems of linear algebraic equations, ordinary differential equations, and eigenvalue problems Addresses approximation of tabulated functions, regression, integration of one- and multi-dimensional functions by classical and Gaussian quadratures, Monte Carlo integration techniques, generation of random variables, discretization methods for ordinary and partial differential equations, and stability analysis This text introduces platform-independent numerical programming using Python and C/C++, and appeals to advanced undergraduate and graduate students in natural sciences and engineering, researchers involved in scientific computing, and engineers carrying out applicative calculations.
Download or read book Python Programming and Numerical Methods written by Qingkai Kong and published by Academic Press. This book was released on 2020-11-27 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online