EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Finsler Geometry on Sobolev Manifolds

Download or read book Finsler Geometry on Sobolev Manifolds written by James Burton Dowling and published by . This book was released on 1969 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lectures On Finsler Geometry

Download or read book Lectures On Finsler Geometry written by Zhongmin Shen and published by World Scientific. This book was released on 2001-05-22 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world.Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory.

Book Global Analysis

    Book Details:
  • Author : Shiing-Shen Chern
  • Publisher : American Mathematical Soc.
  • Release : 1970-12-31
  • ISBN : 9780821873526
  • Pages : 260 pages

Download or read book Global Analysis written by Shiing-Shen Chern and published by American Mathematical Soc.. This book was released on 1970-12-31 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finsler Geometry  Relativity and Gauge Theories

Download or read book Finsler Geometry Relativity and Gauge Theories written by G.S. Asanov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The methods of differential geometry have been so completely merged nowadays with physical concepts that general relativity may well be considered to be a physical theory of the geometrical properties of space-time. The general relativity principles together with the recent development of Finsler geometry as a metric generalization of Riemannian geometry justify the attempt to systematize the basic techniques for extending general relativity on the basis of Finsler geometry. It is this endeavour that forms the subject matter of the present book. Our exposition reveals the remarkable fact that the Finslerian approach is automatically permeated with the idea of the unification of the geometrical space-time picture with gauge field theory - a circumstance that we try our best to elucidate in this book. The book has been written in such a way that the reader acquainted with the methods of tensor calculus and linear algebra at the graduate level can use it as a manual of Finslerian techniques orientable to applications in several fields. The problems attached to the chapters are also intended to serve this purpose. This notwithstanding, whenever we touch upon the Finslerian refinement or generalization of physical concepts, we assume that the reader is acquainted with these concepts at least at the level of the standard textbooks, to which we refer him or her.

Book Comparison Finsler Geometry

Download or read book Comparison Finsler Geometry written by Shin-ichi Ohta and published by Springer Nature. This book was released on 2021-10-09 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.

Book Lectures on the Geometry of Manifolds

Download or read book Lectures on the Geometry of Manifolds written by Liviu I. Nicolaescu and published by World Scientific. This book was released on 2007 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that ?in learning the sciences examples are of more use than precepts?. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a ?global and analytical bias?. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincar‚ duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-;Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand H”lder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.

Book Foundations of Finsler Geometry and Special Finsler Spaces

Download or read book Foundations of Finsler Geometry and Special Finsler Spaces written by 松本誠 and published by . This book was released on 1986 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Elements of Non Linear Functional Analysis

Download or read book Elements of Non Linear Functional Analysis written by Richard A. Graff and published by American Mathematical Soc.. This book was released on 1978 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new notion of Frechet differentiability is introduced for maps between Banach spaces which are dual spaces, and it is shown that diffeomorphisms in the class of mappings thus isolated preserve the bounded weak-star topology as well as the ordinary metric topology. Basic Banach manifold differential topology is redeveloped under the assumption that the transition functions between the coordinate charts possess this refined type of differentiability, and it is pointed out that such manifolds possess additional structures not found on general manifolds: for example, a globally defined weaker topology, and Finsler metrics in which boundedness is equivalent to compact closure in the global weaker topology.

Book An Introduction to Riemann Finsler Geometry

Download or read book An Introduction to Riemann Finsler Geometry written by D. Bao and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. "This book offers the most modern treatment of the topic ..." EMS Newsletter.

Book Riemann Finsler Geometry

Download or read book Riemann Finsler Geometry written by Shiing-Shen Chern and published by World Scientific. This book was released on 2005 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Riemann-Finsler geometry is a subject that concerns manifolds with Finsler metrics, including Riemannian metrics. It has applications in many fields of the natural sciences. Curvature is the central concept in Riemann-Finsler geometry. This invaluable textbook presents detailed discussions on important curvatures such the Cartan torsion, the S-curvature, the Landsberg curvature and the Riemann curvature. It also deals with Finsler metrics with special curvature or geodesic properties, such as projectively flat Finsler metrics, Berwald metrics, Finsler metrics of scalar curvature or isotropic S-curvature, etc. Instructive examples are given in abundance, for further description of some important geometric concepts. The text includes the most recent results, although many of the problems discussed are classical. Graduate students and researchers in differential geometry.

Book Riemannian Geometry

    Book Details:
  • Author : Isaac Chavel
  • Publisher : Cambridge University Press
  • Release : 1995-01-27
  • ISBN : 9780521485784
  • Pages : 402 pages

Download or read book Riemannian Geometry written by Isaac Chavel and published by Cambridge University Press. This book was released on 1995-01-27 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to Riemannian geometry, the geometry of curved spaces. Its main theme is the effect of the curvature of these spaces on the usual notions of geometry, angles, lengths, areas, and volumes, and those new notions and ideas motivated by curvature itself. Isoperimetric inequalities--the interplay of curvature with volume of sets and the areas of their boundaries--is reviewed along with other specialized classical topics. A number of completely new themes are created by curvature: they include local versus global geometric properties, that is, the interaction of microscopic behavior of the geometry with the macroscopic structure of the space. Also featured is an ambitious "Notes and Exercises" section for each chapter that will develop and enrich the reader's appetite and appreciation for the subject.

Book Stochastic Processes  Physics And Geometry

Download or read book Stochastic Processes Physics And Geometry written by Sergio Albeverio and published by World Scientific. This book was released on 1990-10-15 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Differential and Riemannian Manifolds

Download or read book Differential and Riemannian Manifolds written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).

Book Einstein Manifolds

    Book Details:
  • Author : Arthur L. Besse
  • Publisher : Springer Science & Business Media
  • Release : 2007-12-03
  • ISBN : 3540741208
  • Pages : 529 pages

Download or read book Einstein Manifolds written by Arthur L. Besse and published by Springer Science & Business Media. This book was released on 2007-12-03 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: Einstein's equations stem from General Relativity. In the context of Riemannian manifolds, an independent mathematical theory has developed around them. This is the first book which presents an overview of several striking results ensuing from the examination of Einstein’s equations in the context of Riemannian manifolds. Parts of the text can be used as an introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals.

Book From Topology to Computation  Proceedings of the Smalefest

Download or read book From Topology to Computation Proceedings of the Smalefest written by Morris W. Hirsch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extraordinary mathematical conference was held 5-9 August 1990 at the University of California at Berkeley: From Topology to Computation: Unity and Diversity in the Mathematical Sciences An International Research Conference in Honor of Stephen Smale's 60th Birthday The topics of the conference were some of the fields in which Smale has worked: • Differential Topology • Mathematical Economics • Dynamical Systems • Theory of Computation • Nonlinear Functional Analysis • Physical and Biological Applications This book comprises the proceedings of that conference. The goal of the conference was to gather in a single meeting mathemati cians working in the many fields to which Smale has made lasting con tributions. The theme "Unity and Diversity" is enlarged upon in the section entitled "Research Themes and Conference Schedule." The organizers hoped that illuminating connections between seemingly separate mathematical sub jects would emerge from the conference. Since such connections are not easily made in formal mathematical papers, the conference included discussions after each of the historical reviews of Smale's work in different fields. In addition, there was a final panel discussion at the end of the conference.

Book Riemannian Submersions and Related Topics

Download or read book Riemannian Submersions and Related Topics written by Maria Falcitelli and published by World Scientific. This book was released on 2004 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: - First systematic exposition devoted to Riemannian submersions - Deals with current material - Contains a wide-ranging bibliography and about 350 references

Book Minkowski Geometry

    Book Details:
  • Author : Anthony C. Thompson
  • Publisher : Cambridge University Press
  • Release : 1996-06-28
  • ISBN : 9780521404723
  • Pages : 380 pages

Download or read book Minkowski Geometry written by Anthony C. Thompson and published by Cambridge University Press. This book was released on 1996-06-28 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive treatment of Minkowski geometry since the 1940's