EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Finite Element Error Analysis for PDE constrained Optimal Control Problems

Download or read book Finite Element Error Analysis for PDE constrained Optimal Control Problems written by Dieter Sirch and published by Logos Verlag Berlin GmbH. This book was released on 2010 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subject of this work is the analysis of numerical methods for the solution of optimal control problems governed by elliptic partial differential equations. Such problems arise, if one does not only want to simulate technical or physical processes but also wants to optimize them with the help of one or more influence variables. In many practical applications these influence variables, so called controls, cannot be chosen arbitrarily, but have to fulfill certain inequality constraints. The numerical treatment of such control constrained optimal control problems requires a discretization of the underlying infinite dimensional function spaces. To guarantee the quality of the numerical solution one has to estimate and to quantify the resulting approximation errors. In this thesis a priori error estimates for finite element discretizations are proved in case of corners or edges in the underlying domain and nonsmooth coefficients in the partial differential equation. These facts influence the regularity properties of the solution and require adapted meshes to get optimal convergence rates. Isotropic and anisotropic refinement strategies are given and error estimates in polygonal and prismatic domains are proved. The theoretical results are confirmed by numerical tests.

Book Constrained Optimization and Optimal Control for Partial Differential Equations

Download or read book Constrained Optimization and Optimal Control for Partial Differential Equations written by Günter Leugering and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.

Book Trends in PDE Constrained Optimization

Download or read book Trends in PDE Constrained Optimization written by Günter Leugering and published by Springer. This book was released on 2014-12-22 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics. The book is divided into five sections on “Constrained Optimization, Identification and Control”, “Shape and Topology Optimization”, “Adaptivity and Model Reduction”, “Discretization: Concepts and Analysis” and “Applications”. Peer-reviewed research articles present the most recent results in the field of PDE constrained optimization and control problems. Informative survey articles give an overview of topics that set sustainable trends for future research. This makes this special volume interesting not only for mathematicians, but also for engineers and for natural and medical scientists working on processes that can be modeled by PDEs.

Book Optimization with PDE Constraints

Download or read book Optimization with PDE Constraints written by Michael Hinze and published by Springer Science & Business Media. This book was released on 2008-10-16 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solving optimization problems subject to constraints given in terms of partial d- ferential equations (PDEs) with additional constraints on the controls and/or states is one of the most challenging problems in the context of industrial, medical and economical applications, where the transition from model-based numerical si- lations to model-based design and optimal control is crucial. For the treatment of such optimization problems the interaction of optimization techniques and num- ical simulation plays a central role. After proper discretization, the number of op- 3 10 timization variables varies between 10 and 10 . It is only very recently that the enormous advances in computing power have made it possible to attack problems of this size. However, in order to accomplish this task it is crucial to utilize and f- ther explore the speci?c mathematical structure of optimization problems with PDE constraints, and to develop new mathematical approaches concerning mathematical analysis, structure exploiting algorithms, and discretization, with a special focus on prototype applications. The present book provides a modern introduction to the rapidly developing ma- ematical ?eld of optimization with PDE constraints. The ?rst chapter introduces to the analytical background and optimality theory for optimization problems with PDEs. Optimization problems with PDE-constraints are posed in in?nite dim- sional spaces. Therefore, functional analytic techniques, function space theory, as well as existence- and uniqueness results for the underlying PDE are essential to study the existence of optimal solutions and to derive optimality conditions.

Book Optimization with PDE Constraints

Download or read book Optimization with PDE Constraints written by Ronald Hoppe and published by Springer. This book was released on 2014-09-11 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).

Book Frontiers in PDE Constrained Optimization

Download or read book Frontiers in PDE Constrained Optimization written by Harbir Antil and published by Springer. This book was released on 2018-10-12 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.

Book Applied and Numerical Partial Differential Equations

Download or read book Applied and Numerical Partial Differential Equations written by W. Fitzgibbon and published by Springer Science & Business Media. This book was released on 2010-01-08 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Standing at the intersection of mathematics and scientific computing, this collection of state-of-the-art papers in nonlinear PDEs examines their applications to subjects as diverse as dynamical systems, computational mechanics, and the mathematics of finance.

Book Advanced Finite Element Methods with Applications

Download or read book Advanced Finite Element Methods with Applications written by Thomas Apel and published by Springer. This book was released on 2019-06-28 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.

Book Multiple Shooting and Time Domain Decomposition Methods

Download or read book Multiple Shooting and Time Domain Decomposition Methods written by Thomas Carraro and published by Springer. This book was released on 2015-10-26 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time-dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms. The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics. This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied mathematicians, computer scientists and all scientists using mathematical methods.

Book Variational Analysis and Set Optimization

Download or read book Variational Analysis and Set Optimization written by Akhtar A. Khan and published by CRC Press. This book was released on 2019-06-07 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the latest advances in variational analysis and set / vector optimization, including uncertain optimization, optimal control and bilevel optimization. Recent developments concerning scalarization techniques, necessary and sufficient optimality conditions and duality statements are given. New numerical methods for efficiently solving set optimization problems are provided. Moreover, applications in economics, finance and risk theory are discussed. Summary The objective of this book is to present advances in different areas of variational analysis and set optimization, especially uncertain optimization, optimal control and bilevel optimization. Uncertain optimization problems will be approached from both a stochastic as well as a robust point of view. This leads to different interpretations of the solutions, which widens the choices for a decision-maker given his preferences. Recent developments regarding linear and nonlinear scalarization techniques with solid and nonsolid ordering cones for solving set optimization problems are discussed in this book. These results are useful for deriving optimality conditions for set and vector optimization problems. Consequently, necessary and sufficient optimality conditions are presented within this book, both in terms of scalarization as well as generalized derivatives. Moreover, an overview of existing duality statements and new duality assertions is given. The book also addresses the field of variable domination structures in vector and set optimization. Including variable ordering cones is especially important in applications such as medical image registration with uncertainties. This book covers a wide range of applications of set optimization. These range from finance, investment, insurance, control theory, economics to risk theory. As uncertain multi-objective optimization, especially robust approaches, lead to set optimization, one main focus of this book is uncertain optimization. Important recent developments concerning numerical methods for solving set optimization problems sufficiently fast are main features of this book. These are illustrated by various examples as well as easy-to-follow-steps in order to facilitate the decision process for users. Simple techniques aimed at practitioners working in the fields of mathematical programming, finance and portfolio selection are presented. These will help in the decision-making process, as well as give an overview of nondominated solutions to choose from.

Book Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Download or read book Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging written by Ke Chen and published by Springer Nature. This book was released on 2023-02-24 with total page 1981 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.

Book Chaos and Complex Systems

    Book Details:
  • Author : Stavros G. Stavrinides
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-19
  • ISBN : 364233914X
  • Pages : 559 pages

Download or read book Chaos and Complex Systems written by Stavros G. Stavrinides and published by Springer Science & Business Media. This book was released on 2013-03-19 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complexity Science and Chaos Theory are fascinating areas of scientific research with wide-ranging applications. The interdisciplinary nature and ubiquity of complexity and chaos are features that provides scientists with a motivation to pursue general theoretical tools and frameworks. Complex systems give rise to emergent behaviors, which in turn produce novel and interesting phenomena in science, engineering, as well as in the socio-economic sciences. The aim of all Symposia on Chaos and Complex Systems (CCS) is to bring together scientists, engineers, economists and social scientists, and to discuss the latest insights and results obtained in the area of corresponding nonlinear-system complex (chaotic) behavior. Especially for the “4th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems,” which took place April 29th to May 2nd, 2012 in Antalya, Turkey, the scope of the symposium had been further enlarged so as to encompass the presentation of work from circuits to econophysics, and from nonlinear analysis to the history of chaos theory. The corresponding proceedings collected in this volume address a broad spectrum of contemporary topics, including but not limited to networks, circuits, systems, biology, evolution and ecology, nonlinear dynamics and pattern formation, as well as neural, psychological, psycho-social, socio-economic, management complexity and global systems.

Book Control and Optimization with PDE Constraints

Download or read book Control and Optimization with PDE Constraints written by Kristian Bredies and published by Springer Science & Business Media. This book was released on 2013-06-12 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many mathematical models of physical, biological and social systems involve partial differential equations (PDEs). The desire to understand and influence these systems naturally leads to considering problems of control and optimization. This book presents important topics in the areas of control of PDEs and of PDE-constrained optimization, covering the full spectrum from analysis to numerical realization and applications. Leading scientists address current topics such as non-smooth optimization, Hamilton–Jacobi–Bellmann equations, issues in optimization and control of stochastic partial differential equations, reduced-order models and domain decomposition, discretization error estimates for optimal control problems, and control of quantum-dynamical systems. These contributions originate from the “International Workshop on Control and Optimization of PDEs” in Mariatrost in October 2011. This book is an excellent resource for students and researchers in control or optimization of differential equations. Readers interested in theory or in numerical algorithms will find this book equally useful.

Book Model Reduction of Parametrized Systems

Download or read book Model Reduction of Parametrized Systems written by Peter Benner and published by Springer. This book was released on 2017-09-05 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).

Book Numerical Control  Part A

Download or read book Numerical Control Part A written by and published by Elsevier. This book was released on 2022-02-15 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Control: Part A, Volume 23 in the Handbook of Numerical Analysis series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this volume include Numerics for finite-dimensional control systems, Moments and convex optimization for analysis and control of nonlinear PDEs, The turnpike property in optimal control, Structure-Preserving Numerical Schemes for Hamiltonian Dynamics, Optimal Control of PDEs and FE-Approximation, Filtration techniques for the uniform controllability of semi-discrete hyperbolic equations, Numerical controllability properties of fractional partial differential equations, Optimal Control, Numerics, and Applications of Fractional PDEs, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Numerical Analysis series - Updated release includes the latest information on Numerical Control

Book Optimal Control of Partial Differential Equations

Download or read book Optimal Control of Partial Differential Equations written by Andrea Manzoni and published by Springer Nature. This book was released on 2022-01-01 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book on optimal control problems (OCPs) for partial differential equations (PDEs) that evolved from a series of courses taught by the authors in the last few years at Politecnico di Milano, both at the undergraduate and graduate levels. The book covers the whole range spanning from the setup and the rigorous theoretical analysis of OCPs, the derivation of the system of optimality conditions, the proposition of suitable numerical methods, their formulation, their analysis, including their application to a broad set of problems of practical relevance. The first introductory chapter addresses a handful of representative OCPs and presents an overview of the associated mathematical issues. The rest of the book is organized into three parts: part I provides preliminary concepts of OCPs for algebraic and dynamical systems; part II addresses OCPs involving linear PDEs (mostly elliptic and parabolic type) and quadratic cost functions; part III deals with more general classes of OCPs that stand behind the advanced applications mentioned above. Starting from simple problems that allow a “hands-on” treatment, the reader is progressively led to a general framework suitable to face a broader class of problems. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The three parts of the book are suitable to readers with variable mathematical backgrounds, from advanced undergraduate to Ph.D. levels and beyond. We believe that applied mathematicians, computational scientists, and engineers may find this book useful for a constructive approach toward the solution of OCPs in the context of complex applications.