EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Finite Difference Delay Modeling for Time Domain Integral Equations of Electromagnetics

Download or read book Finite Difference Delay Modeling for Time Domain Integral Equations of Electromagnetics written by Xiaobo Wang and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Time domain integral equation (TDIE)-based methods for the electromagnetic scattering and radiation problems have many potential applications in the areas of high-resolution radar technology, electromagnetic pulse simulation studies, and target identification techniques. These applications could benefit from TDIE methods because of their combination of the strengths of integral equation methods and time domain methods. Specifically, as integral equation methods, they need only surface discretization for homogeneous scatterers, and as time domain methods, they can work for nonlinear problems and can analyze a band of frequencies in a single simulation. Despite these advantages, TDIE methods have historically been inefficient and unstable, and therefore have not been applied broadly. This thesis develops an absolutely stable and accurate TDIE-based technique called the finite difference delay modeling (FDDM) method. In the FDDM method, the temporal discretization is realized by a mapping from the Laplace domain to the [Special characters omitted.] -domain based on a finite difference approximation derived from an ordinary differential equation solution method. Once the system is in the [Special characters omitted.] -domain, it can be inverse-transformed into a discrete time system and solved by marching-on-in-time. For Green's functions with simple Laplace domain expressions, the process can be carried out analytically. For other Green's functions or discretization schemes, a numerical method is employed to calculate the inverse [Special characters omitted.] -transform using trapezoidal rule and discrete Fourier transform (DFT). The first FDDM method developed here computes scattering from perfect electric conductors (PECs). For the temporal discretization, first- and second-order finite difference approximations are used and are shown to be unconditionally stable. For open scatterers, there is a slowly growing, low frequency instability at later time steps because the electric field integral equation is blind to static solenoidal currents which generate no electric field. This problem can be solved by a loop-tree decomposition approach. The second application of the FDDM scheme presented here computes the scattering from homogeneous dielectric bodies. Low frequency instability problems were avoided with another stabilization technique that augments the tangential field boundary condition equations with normal field boundary condition equations. In addition, the FDDM method was applied to dispersive scattering problems. Using FDDM, dispersive scattering is not much harder to model than non-dispersive scattering, though the kernels can be difficult to compute analytically. Thus, a numerical method is employed to compute the inverse [Special characters omitted.] -transform needed to discretize the kernel in time. Finally, to get better temporal convergence, implicit Runge-Kutta based (IRK) based schemes are applied for the temporal discretization. The proposed technique maps a Laplace domain equation to a [Special characters omitted.] -domain equation using the Butcher tableau of the IRK scheme. A discrete time domain system is recovered by computing the inverse [Special characters omitted.] -transform numerically. The resulting technique is capable of third- or fifth-order accuracy in time, and is absolutely stable. Numerical results illustrate the accuracy and stability of the technique.

Book Time Domain Boundary Integral Equations Analysis

Download or read book Time Domain Boundary Integral Equations Analysis written by Amir Geranmayeh and published by Sudwestdeutscher Verlag Fur Hochschulschriften AG. This book was released on 2011-01 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present research study mainly involves a survey of diverse time-domain boundary element methods that can be used to numerically solve the retarded potential integral equations. The aim is to address the late-time stability, accuracy, and computational complexity concerns in time-domain surface integral equation approaches. The study generally targets the transient electromagnetic scattering of three- dimensional perfectly conducting bodies. Efficient algorithms are developed to numerically solve the electric, magnetic, and combined field integral equations for the unknown induced surface current. The algorithms are mainly categorized into three major discretization schemes, namely the marching-on- in-time, the marching-on-in-order, and the convolution quadrature methods or finite difference delay modeling. Possible choices of space-time integration are examined and the results are compared with the finite integration technique's solution. The outcome is applied to the non- dispersive modeling of the field propagation in particle accelerator structures, when travelling bunches of charged particles passes through the beam line elements.

Book Introduction to the Finite Difference Time Domain  FDTD  Method for Electromagnetics

Download or read book Introduction to the Finite Difference Time Domain FDTD Method for Electromagnetics written by Stephen Gedney and published by Springer Nature. This book was released on 2022-05-31 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing

Book Effects of Integration Rule Choice on Time Domain Integral Equation Stability

Download or read book Effects of Integration Rule Choice on Time Domain Integral Equation Stability written by Ismail Hakki Uluer and published by . This book was released on 2017 with total page 49 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sources of instability are one of the unresolved mysteries of the numerical solution of the time domain integral equations of electromagnetics, and finding these sources is difficult due to the complexity of the numerical analysis of these equations. Even though the approaches that are studied in this thesis, namely Finite Difference Delay Modeling and Bandlimited Interpolation and Extrapolation, generally work well and are much more stable than their predecessors, implementation issues may affect the stability of these schemes. Hence, computational experiments plays a key role in evaluation of their stability properties. This thesis, therefore, investigates in detail the influence of integration rule choice on time domain integral equations stability with computational experiments. Numerical results confirm that the stabilization of the methods depends on the choice of integration rules, but it is not always improved by increasing the order of integration.

Book Advances in Time Domain Computational Electromagnetic Methods

Download or read book Advances in Time Domain Computational Electromagnetic Methods written by Qiang Ren and published by John Wiley & Sons. This book was released on 2022-11-15 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Time-Domain Computational Electromagnetic Methods Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discusses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/ quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.

Book Time Domain Scattering

Download or read book Time Domain Scattering written by P. A. Martin and published by Cambridge University Press. This book was released on 2021-06-24 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The wave equation, a classical partial differential equation, has been studied and applied since the eighteenth century. Solving it in the presence of an obstacle, the scatterer, can be achieved using a variety of techniques and has a multitude of applications. This book explains clearly the fundamental ideas of time-domain scattering, including in-depth discussions of separation of variables and integral equations. The author covers both theoretical and computational aspects, and describes applications coming from acoustics (sound waves), elastodynamics (waves in solids), electromagnetics (Maxwell's equations) and hydrodynamics (water waves). The detailed bibliography of papers and books from the last 100 years cement the position of this work as an essential reference on the topic for applied mathematicians, physicists and engineers.

Book Retarded Potentials and Time Domain Boundary Integral Equations

Download or read book Retarded Potentials and Time Domain Boundary Integral Equations written by Francisco-Javier Sayas and published by Springer. This book was released on 2016-04-12 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a thorough and self-contained exposition of the mathematics of time-domain boundary integral equations associated to the wave equation, including applications to scattering of acoustic and elastic waves. The book offers two different approaches for the analysis of these integral equations, including a systematic treatment of their numerical discretization using Galerkin (Boundary Element) methods in the space variables and Convolution Quadrature in the time variable. The first approach follows classical work started in the late eighties, based on Laplace transforms estimates. This approach has been refined and made more accessible by tailoring the necessary mathematical tools, avoiding an excess of generality. A second approach contains a novel point of view that the author and some of his collaborators have been developing in recent years, using the semigroup theory of evolution equations to obtain improved results. The extension to electromagnetic waves is explained in one of the appendices.

Book Computational Electromagnetism

Download or read book Computational Electromagnetism written by Houssem Haddar and published by Springer. This book was released on 2015-07-20 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems. Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scientific computing.

Book Time Domain Electromagnetics

Download or read book Time Domain Electromagnetics written by Sadasiva M. Rao and published by Elsevier. This book was released on 1999-07-26 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time Domain Electromagnetics deals with a specific technique in electromagnetics within the general area of electrical engineering. This mathematical method has become a standard for a wide variety of applications for design and problem solving. This method of analysis in electromagnetics is directly related to advances in cellular and mobile communications technology, as well as traditional EM areas such as radar, antennas, and wave propagation. Most of the material is available in the research journals which is difficult for a non-specialist to locate, read, understand, and effectively use for the problem at hand. Only book currently available to practicing engineers and research scientists exclusively devoted to this subject Includes contributions by the world's leading experts in electromagnetics Presents the most popular methods used in time domain analysis are included at one place with thorough discussion of the methods in an easily understandable style In each chapter, many simple and practical examples are discussed thoroughly to illustrate the salient points of the material presented All chapters are written in a consistent style that allows the book to be of use for self-study by professionals as well as for use in a graduate-level course in electrical engineering

Book Numerical Electromagnetics

    Book Details:
  • Author : Umran S. Inan
  • Publisher : Cambridge University Press
  • Release : 2011-04-07
  • ISBN : 1139497987
  • Pages : 405 pages

Download or read book Numerical Electromagnetics written by Umran S. Inan and published by Cambridge University Press. This book was released on 2011-04-07 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.

Book Fast Boundary Element Methods in Engineering and Industrial Applications

Download or read book Fast Boundary Element Methods in Engineering and Industrial Applications written by Ulrich Langer and published by Springer Science & Business Media. This book was released on 2012-02-02 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains eight state of the art contributions on mathematical aspects and applications of fast boundary element methods in engineering and industry. This covers the analysis and numerics of boundary integral equations by using differential forms, preconditioning of hp boundary element methods, the application of fast boundary element methods for solving challenging problems in magnetostatics, the simulation of micro electro mechanical systems, and for contact problems in solid mechanics. Other contributions are on recent results on boundary element methods for the solution of transient problems. This book is addressed to researchers, graduate students and practitioners working on and using boundary element methods. All contributions also show the great achievements of interdisciplinary research between mathematicians and engineers, with direct applications in engineering and industry.

Book Handbook of Peridynamic Modeling

Download or read book Handbook of Peridynamic Modeling written by Florin Bobaru and published by CRC Press. This book was released on 2016-11-03 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook covers the peridynamic modeling of failure and damage. Peridynamics is a reformulation of continuum mechanics based on integration of interactions rather than spatial differentiation of displacements. The book extends the classical theory of continuum mechanics to allow unguided modeling of crack propagation/fracture in brittle, quasi-brittle, and ductile materials; autonomous transition from continuous damage/fragmentation to fracture; modeling of long-range forces within a continuous body; and multiscale coupling in a consistent mathematical framework.

Book CFDTD

Download or read book CFDTD written by Wenhua Yu and published by . This book was released on 2004 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here's a powerful, full three-dimensional Maxwell's equations solver that serves as a fast and accurate tool for modeling a wide variety of antenna and arrays, waveguides, cavities, microwave circuits, as well as a useful resource for Radar Cross Section analysis. This cutting-edge CFDTD software package combines visual languages and advanced techniques in computational electromagnetics to simulate the behaviors of complex microwave systems. Designed to handle 220 x 220 x 220 nodes, the software is well-equipped for large-size and high-frequency problems.

Book Parallel Algorithms in Computational Science and Engineering

Download or read book Parallel Algorithms in Computational Science and Engineering written by Ananth Grama and published by Springer Nature. This book was released on 2020-07-06 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume highlights two areas of fundamental interest in high-performance computing: core algorithms for important kernels and computationally demanding applications. The first few chapters explore algorithms, numerical techniques, and their parallel formulations for a variety of kernels that arise in applications. The rest of the volume focuses on state-of-the-art applications from diverse domains. By structuring the volume around these two areas, it presents a comprehensive view of the application landscape for high-performance computing, while also enabling readers to develop new applications using the kernels. Readers will learn how to choose the most suitable parallel algorithms for any given application, ensuring that theory and practicality are clearly connected. Applications using these techniques are illustrated in detail, including: Computational materials science and engineering Computational cardiovascular analysis Multiscale analysis of wind turbines and turbomachinery Weather forecasting Machine learning techniques Parallel Algorithms in Computational Science and Engineering will be an ideal reference for applied mathematicians, engineers, computer scientists, and other researchers who utilize high-performance computing in their work.

Book Integral Equation Techniques in Transient Electromagnetics

Download or read book Integral Equation Techniques in Transient Electromagnetics written by Dragan Poljak and published by Computational Mechanics. This book was released on 2003 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transient electromagnetic phenomena can be treated in two ways, either using direct time domain modeling or frequency domain analysis applying the inverse Fourier transform. Both approaches are important since each has distinct advantages depending on the situation or the application.

Book Co simulations of Microwave Circuits and High Frequency Electromagnetic Fields

Download or read book Co simulations of Microwave Circuits and High Frequency Electromagnetic Fields written by Mei Song Tong and published by Springer Nature. This book was released on with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Modeling in Computational Electromagnetic Compatibility

Download or read book Advanced Modeling in Computational Electromagnetic Compatibility written by Dragan Poljak and published by John Wiley & Sons. This book was released on 2007-02-26 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text combines the fundamentals of electromagnetics with numerical modeling to tackle a broad range of current electromagnetic compatibility (EMC) problems, including problems with lightning, transmission lines, and grounding systems. It sets forth a solid foundation in the basics before advancing to specialized topics, and allows readers to develop their own EMC computational models for applications in both research and industry.