EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Filtering  Control and Fault Detection with Randomly Occurring Incomplete Information

Download or read book Filtering Control and Fault Detection with Randomly Occurring Incomplete Information written by Hongli Dong and published by John Wiley & Sons. This book was released on 2013-06-13 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modelling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Filtering, Control and Fault Detection with Randomly Occurring Incomplete Information reflects the state-of-the-art of the research area for handling randomly occurring incomplete information from three interrelated aspects of control, filtering and fault detection. Recent advances in networked control systems and distributed filtering over sensor networks are covered, and application potential in mobile robotics is also considered. The reader will benefit from the introduction of new concepts, new models and new methodologies with practical significance in control engineering and signal processing. Key Features: Establishes a unified framework for filtering, control and fault detection problem for various discrete-time nonlinear stochastic systems with randomly occurring incomplete information Investigates several new concepts for randomly occurring phenomena and proposes a new system model to better describe network-induced problems Demonstrates how newly developed techniques can handle emerging mathematical and computational challenges Contains the latest research results Filtering, Control and Fault Detection with Randomly Occurring Incomplete Information provides a unified yet neat framework for control/filtering/fault-detection with randomly occurring incomplete information. It is a comprehensive textbook for graduate students and is also a useful practical research reference for engineers dealing with control, filtering and fault detection problems for networked systems.

Book Performance Analysis and Synthesis for Discrete Time Stochastic Systems with Network Enhanced Complexities

Download or read book Performance Analysis and Synthesis for Discrete Time Stochastic Systems with Network Enhanced Complexities written by Derui Ding and published by CRC Press. This book was released on 2018-10-11 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book addresses the system performance with a focus on the network-enhanced complexities and developing the engineering-oriented design framework of controllers and filters with potential applications in system sciences, control engineering and signal processing areas. Therefore, it provides a unified treatment on the analysis and synthesis for discrete-time stochastic systems with guarantee of certain performances against network-enhanced complexities with applications in sensor networks and mobile robotics. Such a result will be of great importance in the development of novel control and filtering theories including industrial impact. Key Features Provides original methodologies and emerging concepts to deal with latest issues in the control and filtering with an emphasis on a variety of network-enhanced complexities Gives results of stochastic control and filtering distributed control and filtering, and security control of complex networked systems Captures the essence of performance analysis and synthesis for stochastic control and filtering Concepts and performance indexes proposed reflect the requirements of engineering practice Methodologies developed in this book include backward recursive Riccati difference equation approach and the discrete-time version of input-to-state stability in probability

Book Networked Nonlinear Stochastic Time Varying Systems

Download or read book Networked Nonlinear Stochastic Time Varying Systems written by Hongli Dong and published by CRC Press. This book was released on 2021-09-10 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Networked Non-linear Stochastic Time-Varying Systems: Analysis and Synthesis copes with the filter design, fault estimation and reliable control problems for different classes of nonlinear stochastic time-varying systems with network-enhanced complexities. Divided into three parts, the book discusses the finite-horizon filtering, fault estimation and reliable control, and randomly occurring nonlinearities/uncertainties followed by designing of distributed state and fault estimators, and distributed filters. The third part includes problems of variance-constrained H∞ state estimation, partial-nodes-based state estimation and recursive filtering for nonlinear time-varying complex networks with randomly varying topologies, and random coupling strengths. Offers a comprehensive treatment of the topics related to Networked Nonlinear Stochastic Time-Varying Systems with rigorous math foundation and derivation Unifies existing and emerging concepts concerning control/filtering/estimation and distributed filtering Provides a series of latest results by drawing on the conventional theories of systems science, control engineering and signal processing Deal with practical engineering problems such as event triggered H∞ filtering, non-fragile distributed estimation, recursive filtering, set-membership filtering Demonstrates illustrative examples in each chapter to verify the correctness of the proposed results This book is aimed at engineers, mathematicians, scientists, and upper-level students in the fields of control engineering, signal processing, networked control systems, robotics, data analysis, and automation.

Book Nonlinear Stochastic Systems with Network Induced Phenomena

Download or read book Nonlinear Stochastic Systems with Network Induced Phenomena written by Jun Hu and published by Springer. This book was released on 2014-07-21 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph introduces methods for handling filtering and control problems in nonlinear stochastic systems arising from network-induced phenomena consequent on limited communication capacity. Such phenomena include communication delay, packet dropout, signal quantization or saturation, randomly occurring nonlinearities and randomly occurring uncertainties. The text is self-contained, beginning with an introduction to nonlinear stochastic systems, network-induced phenomena and filtering and control, moving through a collection of the latest research results which focuses on the three aspects of: · the state-of-the-art of nonlinear filtering and control; · recent advances in recursive filtering and sliding mode control; and · their potential for application in networked control systems, and concluding with some ideas for future research work. New concepts such as the randomly occurring uncertainty and the probability-constrained performance index are proposed to make the network models as realistic as possible. The power of combinations of such recent tools as the completing-the-square and sums-of-squares techniques, Hamilton‒Jacobi‒Isaacs matrix inequalities, difference linear matrix inequalities and parameter-dependent matrix inequalities is exploited in treating the mathematical and computational challenges arising from nonlinearity and stochasticity. Nonlinear Stochastic Systems with Network-Induced Phenomena establishes a unified framework of control and filtering which will be of value to academic researchers in bringing structure to problems associated with an important class of networked system and offering new means of solving them. The significance of the new concepts, models and methods presented for practical control engineering and signal processing will also make it a valuable reference for engineers dealing with nonlinear control and filtering problems.

Book Robust Integration of Model Based Fault Estimation and Fault Tolerant Control

Download or read book Robust Integration of Model Based Fault Estimation and Fault Tolerant Control written by Jianglin Lan and published by Springer Nature. This book was released on 2020-12-11 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust Integration of Model-Based Fault Estimation and Fault-Tolerant Control is a systematic examination of methods used to overcome the inevitable system uncertainties arising when a fault estimation (FE) function and a fault-tolerant controller interact as they are employed together to compensate for system faults and maintain robustly acceptable system performance. It covers the important subject of robust integration of FE and FTC with the aim of guaranteeing closed-loop stability. The reader’s understanding of the theory is supported by the extensive use of tutorial examples, including some MATLAB®-based material available from the Springer website and by industrial-applications-based material. The text is structured into three parts: Part I examines the basic concepts of FE and FTC, providing extensive insight into the importance of and challenges involved in their integration; Part II describes five effective strategies for the integration of FE and FTC: sequential, iterative, simultaneous, adaptive-decoupling, and robust decoupling; and Part III begins to extend the proposed strategies to nonlinear and large-scale systems and covers their application in the fields of renewable energy, robotics and networked systems. The strategies presented are applicable to a broad range of control problems, because in the absence of faults the FE-based FTC naturally reverts to conventional observer-based control. The book is a useful resource for researchers and engineers working in the area of fault-tolerant control systems, and supplementary material for a graduate- or postgraduate-level course on fault diagnosis and FTC. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Book Nonlinear Stochastic Control and Filtering with Engineering oriented Complexities

Download or read book Nonlinear Stochastic Control and Filtering with Engineering oriented Complexities written by Guoliang Wei and published by CRC Press. This book was released on 2016-09-15 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Stochastic Control and Filtering with Engineering-oriented Complexities presents a series of control and filtering approaches for stochastic systems with traditional and emerging engineering-oriented complexities. The book begins with an overview of the relevant background, motivation, and research problems, and then: Discusses the robust stability and stabilization problems for a class of stochastic time-delay interval systems with nonlinear disturbances Investigates the robust stabilization and H∞ control problems for a class of stochastic time-delay uncertain systems with Markovian switching and nonlinear disturbances Explores the H∞ state estimator and H∞ output feedback controller design issues for stochastic time-delay systems with nonlinear disturbances, sensor nonlinearities, and Markovian jumping parameters Analyzes the H∞ performance for a general class of nonlinear stochastic systems with time delays, where the addressed systems are described by general stochastic functional differential equations Studies the filtering problem for a class of discrete-time stochastic nonlinear time-delay systems with missing measurement and stochastic disturbances Uses gain-scheduling techniques to tackle the probability-dependent control and filtering problems for time-varying nonlinear systems with incomplete information Evaluates the filtering problem for a class of discrete-time stochastic nonlinear networked control systems with multiple random communication delays and random packet losses Examines the filtering problem for a class of nonlinear genetic regulatory networks with state-dependent stochastic disturbances and state delays Considers the H∞ state estimation problem for a class of discrete-time complex networks with probabilistic missing measurements and randomly occurring coupling delays Addresses the H∞ synchronization control problem for a class of dynamical networks with randomly varying nonlinearities Nonlinear Stochastic Control and Filtering with Engineering-oriented Complexities describes novel methodologies that can be applied extensively in lab simulations, field experiments, and real-world engineering practices. Thus, this text provides a valuable reference for researchers and professionals in the signal processing and control engineering communities.

Book Filter Based Fault Diagnosis and Remaining Useful Life Prediction

Download or read book Filter Based Fault Diagnosis and Remaining Useful Life Prediction written by Yong Zhang and published by CRC Press. This book was released on 2023-02-09 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book unifies existing and emerging concepts concerning state estimation, fault detection, fault isolation and fault estimation on industrial systems with an emphasis on a variety of network-induced phenomena, fault diagnosis and remaining useful life for industrial equipment. It covers state estimation/monitor, fault diagnosis and remaining useful life prediction by drawing on the conventional theories of systems science, signal processing and machine learning. Features: Unifies existing and emerging concepts concerning robust filtering and fault diagnosis with an emphasis on a variety of network-induced complexities. Explains theories, techniques, and applications of state estimation as well as fault diagnosis from an engineering-oriented perspective. Provides a series of latest results in robust/stochastic filtering, multidate sample, and time-varying system. Captures diagnosis (fault detection, fault isolation and fault estimation) for time-varying multi-rate systems. Includes simulation examples in each chapter to reflect the engineering practice. This book aims at graduate students, professionals and researchers in control science and application, system analysis, artificial intelligence, and fault diagnosis.

Book State Estimation and Fault Diagnosis under Imperfect Measurements

Download or read book State Estimation and Fault Diagnosis under Imperfect Measurements written by Yang Liu and published by CRC Press. This book was released on 2022-08-31 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this book is to present the up-to-date research developments and novel methodologies on state estimation and fault diagnosis (FD) techniques for a class of complex systems subject to closed-loop control, nonlinearities, and stochastic phenomena. It covers state estimation design methodologies and FD unit design methodologies including framework of optimal filter and FD unit design, robust filter and FD unit design, stability, and performance analysis for the considered systems subject to various kinds of complex factors. Features: Reviews latest research results on the state estimation and fault diagnosis issues. Presents comprehensive framework constituted for systems under imperfect measurements. Includes quantitative performance analyses to solve problems in practical situations. Provides simulation examples extracted from practical engineering scenarios. Discusses proper and novel techniques such as the Carleman approximation and completing the square method is employed to solve the mathematical problems. This book aims at Graduate students, Professionals and Researchers in Control Science and Application, Stochastic Process, Fault Diagnosis, and Instrumentation and Measurement.

Book Communication Protocol Based Filtering and Control of Networked Systems

Download or read book Communication Protocol Based Filtering and Control of Networked Systems written by Lei Zou and published by Springer Nature. This book was released on 2022-05-03 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Communication-Protocol-Based Filtering and Control of Networked Systems is a self-contained treatment of the state of the art in communication-protocol-based filtering and control; recent advances in networked systems; and the potential for application in sensor networks. This book provides new concepts, new models and new methodologies with practical significance in control engineering and signal processing. The book first establishes signal-transmission models subject to different communication protocols and then develops new filter design techniques based on those models and preset requirements for filtering performance. The authors then extend this work to finite-horizon H-infinity control, ultimately bounded control and finite-horizon consensus control. The focus throughout is on three typical communications protocols: the round-robin, random-access and try-once-and-discard protocols, and the systems studied are drawn from a variety of classes, among them nonlinear systems, time-delayed and time-varying systems, multi-agent systems and complex networks. Readers are shown the latest techniques—recursive linear matrix inequalities, backward recursive difference equations, stochastic analysis and mapping methods. The unified framework for communication-protocol-based filtering and control for different networked systems established in the book will be of interest to academic researchers and practicing engineers working with communications and other signal-processing systems. Senior undergraduate and graduate students looking to increase their knowledge of current methods in control and signal processing of networked systems will also find this book valuable.

Book Nonlinear Control and Filtering for Stochastic Networked Systems

Download or read book Nonlinear Control and Filtering for Stochastic Networked Systems written by Lifeng Ma and published by CRC Press. This book was released on 2018-12-07 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, control and filtering problems for several classes of stochastic networked systems are discussed. In each chapter, the stability, robustness, reliability, consensus performance, and/or disturbance attenuation levels are investigated within a unified theoretical framework. The aim is to derive the sufficient conditions such that the resulting systems achieve the prescribed design requirements despite all the network-induced phenomena. Further, novel notions such as randomly occurring sensor failures and consensus in probability are discussed. Finally, the theories/techniques developed are applied to emerging research areas. Key Features Unifies existing and emerging concepts concerning stochastic control/filtering and distributed control/filtering with an emphasis on a variety of network-induced complexities Includes concepts like randomly occurring sensor failures and consensus in probability (with respect to time-varying stochastic multi-agent systems) Exploits the recursive linear matrix inequality approach, completing the square method, Hamilton-Jacobi inequality approach, and parameter-dependent matrix inequality approach to handle the emerging mathematical/computational challenges Captures recent advances of theories, techniques, and applications of stochastic control as well as filtering from an engineering-oriented perspective Gives simulation examples in each chapter to reflect the engineering practice

Book Multi model Jumping Systems  Robust Filtering and Fault Detection

Download or read book Multi model Jumping Systems Robust Filtering and Fault Detection written by Shuping He and published by Springer Nature. This book was released on 2021-03-01 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on multi-model systems, describing how to apply intelligent technologies to model complex multi-model systems by combining stochastic jumping system, neural network and fuzzy models. It focuses on robust filtering, including finite-time robust filtering, finite-frequency robust filtering and higher order moment robust filtering schemes, as well as fault detection problems for multi-model jump systems, such as observer-based robust fault detection, filtering-based robust fault detection and neural network-based robust fault detection methods. The book also demonstrates the validity and practicability of the theoretical results using simulation and practical examples, like circuit systems, robot systems and power systems. Further, it introduces readers to methods such as finite-time filtering, finite-frequency robust filtering, as well as higher order moment and neural network-based fault detection methods for multi-model jumping systems, allowing them to grasp the modeling, analysis and design of the multi-model systems presented and implement filtering and fault detection analysis for various systems, including circuit, network and mechanical systems.

Book Cyberphysical Infrastructures in Power Systems

Download or read book Cyberphysical Infrastructures in Power Systems written by Magdi S. Mahmoud and published by Academic Press. This book was released on 2021-10-23 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an uncertain and complex environment, to ensure secure and stable operations of large-scale power systems is one of the biggest challenges that power engineers have to address today. Traditionally, power system operations and decision-making in controls are based on power system computations of physical models describing the behavior of power systems. Largely, physical models are constructed according to some assumptions and simplifications, and such is the case with power system models. However, the complexity of power system stability problems, along with the system's inherent uncertainties and nonlinearities, can result in models that are impractical or inaccurate. This calls for adaptive or deep-learning algorithms to significantly improve current control schemes that solve decision and control problems. Cyberphysical Infrastructures in Power Systems: Architectures and Vulnerabilities provides an extensive overview of CPS concepts and infrastructures in power systems with a focus on the current state-of-the-art research in this field. Detailed classifications are pursued highlighting existing solutions, problems, and developments in this area. Gathers the theoretical preliminaries and fundamental issues related to CPS architectures. Provides coherent results in adopting control and communication methodologies to critically examine problems in various units within smart power systems and microgrid systems. Presents advanced analysis under cyberphysical attacks and develops resilient control strategies to guarantee safe operation at various power levels.

Book Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems

Download or read book Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems written by Hamid Reza Karimi and published by Academic Press. This book was released on 2021-06-05 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems. Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers – mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more. Presents recent advances of theory, technological aspects, and applications of advanced diagnosis and prognosis methodologies in engineering applications Provides a series of the latest results, including fault detection, isolation, fault tolerant control, failure prognosis of components, and more Gives numerical and simulation results in each chapter to reflect engineering practices

Book Optimal State Estimation for Process Monitoring  Fault Diagnosis and Control

Download or read book Optimal State Estimation for Process Monitoring Fault Diagnosis and Control written by Ch. Venkateswarlu and published by Elsevier. This book was released on 2022-01-31 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal State Estimation for Process Monitoring, Fault Diagnosis and Control presents various mechanistic model based state estimators and data-driven model based state estimators with a special emphasis on their development and applications to process monitoring, fault diagnosis and control. The design and analysis of different state estimators are highlighted with a number of applications and case studies concerning to various real chemical and biochemical processes. The book starts with the introduction of basic concepts, extending to classical methods and successively leading to advances in this field. Design and implementation of various classical and advanced state estimation methods to solve a wide variety of problems makes this book immensely useful for the audience working in different disciplines in academics, research and industry in areas concerning to process monitoring, fault diagnosis, control and related disciplines. Describes various classical and advanced versions of mechanistic model based state estimation algorithms Describes various data-driven model based state estimation techniques Highlights a number of real applications of mechanistic model based and data-driven model based state estimators/soft sensors Beneficial to those associated with process monitoring, fault diagnosis, online optimization, control and related areas

Book Dynamic Systems with Time Delays  Stability and Control

Download or read book Dynamic Systems with Time Delays Stability and Control written by Ju H. Park and published by Springer Nature. This book was released on 2019-08-29 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents up-to-date research developments and novel methodologies to solve various stability and control problems of dynamic systems with time delays. First, it provides the new introduction of integral and summation inequalities for stability analysis of nominal time-delay systems in continuous and discrete time domain, and presents corresponding stability conditions for the nominal system and an applicable nonlinear system. Next, it investigates several control problems for dynamic systems with delays including H(infinity) control problem Event-triggered control problems; Dynamic output feedback control problems; Reliable sampled-data control problems. Finally, some application topics covering filtering, state estimation, and synchronization are considered. The book will be a valuable resource and guide for graduate students, scientists, and engineers in the system sciences and control communities.

Book Algorithms for Fault Detection and Diagnosis

Download or read book Algorithms for Fault Detection and Diagnosis written by Francesco Ferracuti and published by MDPI. This book was released on 2021-03-19 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions.

Book Analysis and Design of Markov Jump Systems with Complex Transition Probabilities

Download or read book Analysis and Design of Markov Jump Systems with Complex Transition Probabilities written by Lixian Zhang and published by Springer. This book was released on 2016-01-19 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book addresses the control issues such as stability analysis, control synthesis and filter design of Markov jump systems with the above three types of TPs, and thus is mainly divided into three parts. Part I studies the Markov jump systems with partially unknown TPs. Different methodologies with different conservatism for the basic stability and stabilization problems are developed and compared. Then the problems of state estimation, the control of systems with time-varying delays, the case involved with both partially unknown TPs and uncertain TPs in a composite way are also tackled. Part II deals with the Markov jump systems with piecewise homogeneous TPs. Methodologies that can effectively handle control problems in the scenario are developed, including the one coping with the asynchronous switching phenomenon between the currently activated system mode and the controller/filter to be designed. Part III focuses on the Markov jump systems with memory TPs. The concept of σ-mean square stability is proposed such that the stability problem can be solved via a finite number of conditions. The systems involved with nonlinear dynamics (described via the Takagi-Sugeno fuzzy model) are also investigated. Numerical and practical examples are given to verify the effectiveness of the obtained theoretical results. Finally, some perspectives and future works are presented to conclude the book.