EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Field Evaluation of Transgenic Switchgrass Plants Overexpressing PvMYB4 for Reduced Biomass Recalcitrance

Download or read book Field Evaluation of Transgenic Switchgrass Plants Overexpressing PvMYB4 for Reduced Biomass Recalcitrance written by and published by . This book was released on 2015 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: High biomass yields and minimal agronomic input requirements have made switchgrass, Panicum virgatum L., a leading candidate lignocellulosic bioenergy crop. Large-scale lignocellulosic biofuel production from such crops is limited by the difficulty to deconstruct cell walls into fermentable sugars: the recalcitrance problem. In this study, we assessed the field performance of switchgrass plants overexpressing the switchgrass MYB4 (PvMYB4) transcription factor gene. PvMYB4 transgenic switchgrass can have great lignin reduction, which commensurately increases sugar release and biofuel production. Our results over two growing seasons showed that one transgenic event (out of eight) had important gains in both biofuel (32% more) and biomass (63% more) at the end of the second growing season relative to non-transgenic controls. These gains represent a doubling of biofuel production per hectare, which is the highest gain reported from any field-grown modified feedstock. In contrast to this transgenic event, which had relatively low ectopic overexpression of the transgene, five of the eight transgenic events planted did not survive the first field winter. The dead plants were all high-overexpressing events that performed well in the earlier greenhouse studies. Disease susceptibility was not compromised in any transgenic events over the field experiments. These results demonstrate the power of modifying the expression of an endogenous transcription factor to improve biofuel and biomass simultaneously, and also highlight the importance of field studies for "sorting" transgenic events. In conclusion, further research is needed to develop strategies for fine-tuning temporal-spatial transgene expression in feedstocks to optimize desired phenotypes.

Book Biomass Modification  Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production

Download or read book Biomass Modification Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production written by Robert Henry and published by Frontiers Media SA. This book was released on 2016-06-09 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conversion of lignocellulosic biomass into renewable fuels and other commodities has provided an appealing alternative towards supplanting global dependence on fossil fuels. The suitability of multitudes of plants for deconstruction to useful precursor molecules and products is currently being evaluated. These studies have probed a variety of phenotypic traits, including cellulose, non-cellulosic polysaccharide, lignin, and lignin monomer composition, glucose and xylose production following enzymatic hydrolysis, and an assessment of lignin-carbohydrate and lignin-lignin linkages, to name a few. These quintessential traits can provide an assessment of biomass recalcitrance, enabling researchers to devise appropriate deconstruction strategies. Plants with high polysaccharide and lower lignin contents have been shown to breakdown to monomeric sugars more readily. Not all plants contain ideal proportions of the various cell wall constituents, however. The capabilities of biotechnology can alleviate this conundrum by tailoring the chemical composition of plants to be more favorable for conversion to sugars, fuels, etc. Increases in the total biomass yield, cellulose content, or conversion efficiency through, for example, a reduction in lignin content, are pathways being evaluated to genetically improve plants for use in manufacturing biofuels and bio-based chemicals. Although plants have been previously domesticated for food and fiber production, the collection of phenotypic traits prerequisite for biofuel production may necessitate new genetic breeding schemes. Given the plethora of potential plants available for exploration, rapid analytical methods are needed to more efficiently screen through the bulk of samples to hone in on which feedstocks contain the desired chemistry for subsequent conversion to valuable, renewable commodities. The standard methods for analyzing biomass and related intermediates and finished products are laborious, potentially toxic, and/or destructive. They may also necessitate a complex data analysis, significantly increasing the experimental time and add unwanted delays in process monitoring, where delays can incur in significant costs. Advances in thermochemical and spectroscopic techniques have enabled the screening of thousands of plants for different phenotypes, such as cell-wall cellulose, non-cellulosic polysaccharide, and lignin composition, lignin monomer composition, or monomeric sugar release. Some instrumental methods have been coupled with multivariate analysis, providing elegant chemometric predictive models enabling the accelerated identification of potential feedstocks. In addition to the use of high-throughput analytical methods for the characterization of feedstocks based on phenotypic metrics, rapid instrumental techniques have been developed for the real-time monitoring of diverse processes, such as the efficacy of a specific pretreatment strategy, or the formation of end products, such as biofuels and biomaterials. Real-time process monitoring techniques are needed for all stages of the feedstocks-to-biofuels conversion process in order to maximize efficiency and lower costs by monitoring and optimizing performance. These approaches allow researchers to adjust experimental conditions during, rather than at the conclusion, of a process, thereby decreasing overhead expenses. This Frontiers Research Topic explores options for the modification of biomass composition and the conversion of these feedstocks into to biofuels or biomaterials and the related innovations in methods for the analysis of the composition of plant biomass, and advances in assessing up- and downstream processes in real-time. Finally, a review of the computational models available for techno-economic modeling and lifecycle analysis will be presented.

Book Reducing Cell Wall Recalcitrance and Increasing Biomass for Enhanced Ethanol Production in Switchgrass  Panicum Virgatum L

Download or read book Reducing Cell Wall Recalcitrance and Increasing Biomass for Enhanced Ethanol Production in Switchgrass Panicum Virgatum L written by Charleson Rajendran Poovaiah and published by . This book was released on 2013 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lignocellulosic biomass is a potential large-scale biofuel feedstock for conversion to ethanol through saccharification and fermentation. The presence of lignin in lignocellulosic biomass impedes its degradation and subsequent fermentation. The removal of lignin by pretreatment is the most expensive step in the production of lignocellulosic biofuels. Manipulation of monolignol pathway is needed to reduce lignin and for the rational design of engineered cell walls of lignocellulosic feedstocks. PvMYB4, a transcriptional repressor of lignin gene expression was identified and evaluated for its potential for improving switchgrass as a lignocellulosic feedstock. Ectopic overexpression of PvMYB4 in transgenic switchgrass reduced lignin content and increased sugar release efficiency up to three-fold over that of the non-transgenic control. The transgenic plants yielded up to 2.6-fold more ethanol than controls. Detailed biomass characterization revealed alteration of lignin content, xylan/pectin and lignin linkages, lignin polymer size and internal linkages in lignin leading to reduced recalcitrance and increased ethanol yield. Genetically engineered PvMYB4 switchgrass therefore can be used as potential germplasm for improvement of lignocellulosic feedstocks. It is currently being grown in field experiments. Increasing biomass production is also important for biofuel crops. Sucrose synthase catalyzes the conversion of sucrose and uridine di-phosphate (UDP) into UDP-glucose which is used by cellulose synthase for cell wall biosynthesis. Bioinformatic and cluster analysis was used to identify four sucrose synthase genes in switchgrass. Transient subcellular localization revealed that PvSUS1 localizes to the plasma membrane. Transgenic switchgrass plants overexpressing PvSUS1 had increases in biomass and cellulose content. For switchgrass and other bioenergy feedstocks, the overexpression of SUS1 genes might be a realistic strategy to increase both plant biomass and cellulose content to maximize biofuel production per land area cultivated. Taken together PvMYB4 and PvSUS1 would be two excellent candidate genes to stack in switchgrass to provide improvements in two important aspects of feedstock improvement: greater amounts of less recalcitrant biomass. In addition, these genes could also be overexpressed in other crops such as maize. It could be envisage that a US corn crop overexpressing both these genes together could give greater corn grain yield and less recalcitrant stover for lignocellulosic biofuel production.

Book Transgenic Switchgrass  Panicum Virgatum L   Targeted for Reduced Recalcitrance to Bioconversion

Download or read book Transgenic Switchgrass Panicum Virgatum L Targeted for Reduced Recalcitrance to Bioconversion written by and published by . This book was released on 2016 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: Five different types of transgenic (GAUT4, miRNA, MYB4, COMT and FPGS) Panicum virgatum L. (switchgrass) were grown in a field in Knoxville, Tenn., USA over two consecutive years between 2011 and 2015 in separate experiments. Clonal replicates were established (year-one) and produced much greater biomass during the second year. After each growing season the above ground biomass was analyzed for cell wall sugars and for recalcitrance to enzymatic digestibility, and biofuel using a separate hydrolysis and fermentation (SHF) screen. Here, each transgenic event and control had more glucan, xylan and less ethanol (g/g basis) from the second year of growth relative to the first year plants. There was no correlation between plant carbohydrate content and biofuel production. In each of cell wall-targeted transgenics, GAUT4, MYB4, COMT and FPGS, the second year of growth resulted in increased carbohydrate abundance (up to 12%) and reduced recalcitrance through higher ethanol yields (up to 21%) over the non-transgenic control plants.

Book Regulation of and by the Plant Cell Wall

Download or read book Regulation of and by the Plant Cell Wall written by Georgia Drakakaki and published by Frontiers Media SA. This book was released on 2020-06-25 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hybridization of Downregulated COMT Transgenic Switchgrass Lines with Field selected Switchgrass for Improved Biomass Traits

Download or read book Hybridization of Downregulated COMT Transgenic Switchgrass Lines with Field selected Switchgrass for Improved Biomass Traits written by and published by . This book was released on 2016 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. T2 hybrids produced with T1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.

Book Identification and Overexpression of a Knotted1 like Transcription Factor in Switchgrass  Panicum Virgatum L   for Lignocellulosic Feedstock Improvement

Download or read book Identification and Overexpression of a Knotted1 like Transcription Factor in Switchgrass Panicum Virgatum L for Lignocellulosic Feedstock Improvement written by and published by . This book was released on 2016 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: High biomass production and wide adaptation has made switchgrass (Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our findings demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.

Book Reproduction and Bioconfinement of MiR156 Transgenic Switchgrass  Panicum Virgatum L

Download or read book Reproduction and Bioconfinement of MiR156 Transgenic Switchgrass Panicum Virgatum L written by Chelsea Renai Johnson and published by . This book was released on 2017 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic engineering of switchgrass (Panicum virgatum L.), an emerging cellulosic bioenergy feedstock, has been performed to alter cell walls for improved biofuel conversion. However, gene flow from transgenic switchgrass presents regulatory issues that may prevent commercialization of the genetically engineered crop in the eastern United States. Depending on its expression level, microRNA156 (miR156) can reduce, delay or eliminate flowering, which may be useful to mitigate transgene flow. However, flowering transition is dependent upon both environmental and genetic cues. In this study of transgenic switchgrass, two low (T14 and T35) and two medium (T27 and T37) miR156 overexpressing 'Alamo' lines and nontransgenic control plants were used. A two-year field experiment was performed to compare flowering, reproduction, and biomass yield in eastern Tennessee, U.S.A. Growth chamber studies assessed temperature and photoperiod effects on flowering and reproduction across a simulated latitudinal cline. In the field, medium miR156 overexpression line T37 resulted in the best overall combination of bioconfinement and biomass production. Though line T37 did flower, not all plants produced panicles, and panicle production was delayed in both years. Line T37 also produced fewer panicles, with a 65.9% reduction in year one and 23.8% reduction in year two over controls. T37 panicles produced 70.6% less flowers than control panicles during the second field year with commensurate decreased seed yield: 1205 seeds per plant vs. 18,539 produced by each control. These results are notable given that line T37 produced equivalent vegetative aboveground biomass as controls. In latitudinal simulation growth chambers, elevated temperatures and decreased daylength promoted flowering of the miR156 transgenic switchgrass lines. As temperatures increased and day lengths decreased, more plants in lines T35, T37, and controls produced panicles. The simulated (Ecuador) tropical conditions were the only chambers in which three of the four transgenic lines flowered. These results suggest that miR156 overexpression levels found in transgenic line T37 can be useful for bioconfinement, and the plants can significantly reproduce in tropical conditions, which would enable plant breeding for line improvement. Furthermore, the study suggests additional ways that miR156 can be manipulated to improve both biomass production and bioconfinement.

Book Genetic Modification of Switchgrass  Panicum Virgatum L   for Improvement of Plant Architecture  Biomass Productivity and Sugar Release Efficiency for Biofuel

Download or read book Genetic Modification of Switchgrass Panicum Virgatum L for Improvement of Plant Architecture Biomass Productivity and Sugar Release Efficiency for Biofuel written by Wegi Aberra Wuddineh and published by . This book was released on 2015 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switchgrass (Panicum virgatum L.) is a leading candidate bioenergy crop for sustainable biofuel production. To ensure its economic viability, tremendous improvements in switchgrass biomass productivity and recalcitrance to enzymatic saccharification are needed. Genetic manipulation of lignin biosynthesis by targeting transcriptional regulators of higher level domains of lignin biosynthesis and other complex traits could alter several bioenergy-desirable traits at once. A three-pronged approach was made in the dissertation research to target one plant growth regulator and transcription factors to alter plant architecture a nd cell wall biosynthesis. Gibberellin (GA) catabolic enzymes, GA 2-oxidases (GA2oxs), were utilized to alternatively modify the lignin biosynthesis pathway as GA is known to play a role in plant lignification. Constitutive overexpression of switchgrass C20 [C20] GA2ox genes altered plant morphology and modified plant architecture by increasing the number of tillers. Moreover, transgenic plants exhibited reduced lignin especially in leaves accompanied by 15% increase in sugar release (glucose). The Knotted1 (PvKN1) TF, a putative repressor of lignin biosynthesis genes, was identified and evaluated for improving biomass characteristics of switchgrass for biofuel. Its ectopic overexpression in switchgrass altered the expression of genes in the lignin, cellulose and hemicellulose biosynthesis, and GA signalling pathways. Consequently, transgenic lines displayed altered growth phenotypes particularly at early stages of vegetative development and moderate changes in lignin content accompanied by improved sugar release by up to 16%. The APETALA2/ ethylene responsive factor (AP2/ERF) TFs are key putative targets for engineering plants not only so they can withstand adverse environmental factors but also confer modified cell wall characteristics. To facilitate this, a total of 207 switchgrass AP2/ERF TFs comprising 3 families (AP2, ERF and related to API3/VP (RAV)) were identified. Sequence analysis for conserved putative motifs and expression pattern analysis delimited key genes for manipulation of switchgrass. To that end, the PvERF001 TF gene was ectopically overexpressed resulting in improved biomass yield and sugar release efficiency. The transgenic plants and knowledge produced in this research will be used to create new lines of switchgrass with combined novel traits to address needs in biofuel production and sustainable plant cultivation to enable the development of the bioeconomy.

Book Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals

Download or read book Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals written by Charles E. Wyman and published by John Wiley & Sons. This book was released on 2013-03-27 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plant biomass is attracting increasing attention as a sustainable resource for large-scale production of renewable fuels and chemicals. However, in order to successfully compete with petroleum, it is vital that biomass conversion processes are designed to minimize costs and maximize yields. Advances in pretreatment technology are critical in order to develop high-yielding, cost-competitive routes to renewable fuels and chemicals. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals presents a comprehensive overview of the currently available aqueous pretreatment technologies for cellulosic biomass, highlighting the fundamental chemistry and biology of each method, key attributes and limitations, and opportunities for future advances. Topics covered include: • The importance of biomass conversion to fuels • The role of pretreatment in biological and chemical conversion of biomass • Composition and structure of biomass, and recalcitrance to conversion • Fundamentals of biomass pretreatment at low, neutral and high pH • Ionic liquid and organosolv pretreatments to fractionate biomass • Comparative data for application of leading pretreatments and effect of enzyme formulations • Physical and chemical features of pretreated biomass • Economics of pretreatment for biological processing • Methods of analysis and enzymatic conversion of biomass streams • Experimental pretreatment systems from multiwell plates to pilot plant operations This comprehensive reference book provides an authoritative source of information on the pretreatment of cellulosic biomass to aid those experienced in the field to access the most current information on the topic. It will also be invaluable to those entering the growing field of biomass conversion.

Book Plant Cell Walls

    Book Details:
  • Author : Peter Albersheim
  • Publisher : Garland Science
  • Release : 2010-04-15
  • ISBN : 1136843582
  • Pages : 430 pages

Download or read book Plant Cell Walls written by Peter Albersheim and published by Garland Science. This book was released on 2010-04-15 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plant cell walls are complex, dynamic cellular structures essential for plant growth, development, physiology and adaptation. Plant Cell Walls provides an in depth and diverse view of the microanatomy, biosynthesis and molecular physiology of these cellular structures, both in the life of the plant and in their use for bioproducts and biofuels. Plant Cell Walls is a textbook for upper-level undergraduates and graduate students, as well as a professional-level reference book. Over 400 drawings, micrographs, and photographs provide visual insight into the latest research, as well as the uses of plant cell walls in everyday life, and their applications in biotechnology. Illustrated panels concisely review research methods and tools; a list of key terms is given at the end of each chapter; and extensive references organized by concept headings provide readers with guidance for entry into plant cell wall literature. Cell wall material is of considerable importance to the biofuel, food, timber, and pulp and paper industries as well as being a major focus of research in plant growth and sustainability that are of central interest in present day agriculture and biotechnology. The production and use of plants for biofuel and bioproducts in a time of need for responsible global carbon use requires a deep understanding of the fundamental biology of plants and their cell walls. Such an understanding will lead to improved plant processes and materials, and help provide a sustainable resource for meeting the future bioenergy and bioproduct needs of humankind.

Book Biofuel Production Technologies  Critical Analysis for Sustainability

Download or read book Biofuel Production Technologies Critical Analysis for Sustainability written by Neha Srivastava and published by Springer Nature. This book was released on 2020-03-23 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Production and utilization of sustainable energy toward maintaining a clean environment is a major challenge. At the same time, the continued depletion of fossil fuels and the global dependency on non-renewable fuels is a chief concern. Moreover, the long-term economic and environmental issues associated with the high utilization of fossil fuel, such as global warming, are also important, particularly in the context of the predicted increase in the global population to around 5 billion by 2050. In recent years, researchers have been investigating alternative, renewable fuels to replace fossil fuels. Of the various options, biofuels are especially attractive due to their low production costs and the fact that they are pollution free. Also known as transportation fuels, their energy is derived from biological resources or through the biological processes. Biofuels such as biohydrogen, biomethane, biogas, ethanol and butanol offer a number of advantages and can be economically produced from cellulosic biomass. As such, they can play a vital role in sustainably meeting future energy demands. Biofuels have the potential to become a global primary energy source, offering significant reductions in greenhouse gas emissions as well as opportunities to increase economic and social development in rural communities and reduce the problems associated with waste disposal. However, low yields and lack of process technology are some of the aspects that need to be addressed. This book offers an overview of existing biofuels and the technologies to solve the problems associated with their practical implementation. Evaluating the biofuel options and discussing the opportunities and risks in relation to resources, technologies, practices, markets and policy, it provides insights into the development of economically viable bioenergy industries.

Book Prospects of Renewable Bioprocessing in Future Energy Systems

Download or read book Prospects of Renewable Bioprocessing in Future Energy Systems written by Ali Asghar Rastegari and published by Springer. This book was released on 2019-04-03 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses various renewable energy resources and technologies. Topics covered include recent advances in photobioreactor design; microalgal biomass harvesting, drying, and processing; and technological advances and optimised production systems as prerequisites for achieving a positive energy balance. It highlights alternative resources that can be used to replace fossil fuels, such as algal biofuels, biodiesel, bioethanol, and biohydrogen. Further, it reviews microbial technologies, discusses an immobilization method, and highlights the efficiency of enzymes as a key factor in biofuel production. In closing, the book outlines future research directions to increase oil yields in microalgae, which could create new opportunities for lipid-based biofuels, and provides an outlook on the future of global biofuel production. Given its scope, the book will appeal to all researchers and engineers working in the renewable energy sector.

Book Abiotic and Biotic Stress in Plants

Download or read book Abiotic and Biotic Stress in Plants written by Arun Shanker and published by BoD – Books on Demand. This book was released on 2016-02-17 with total page 770 pages. Available in PDF, EPUB and Kindle. Book excerpt: The impact of global climate change on crop production has emerged as a major research priority during the past decade. Understanding abiotic stress factors such as temperature and drought tolerance and biotic stress tolerance traits such as insect pest and pathogen resistance in combination with high yield in plants is of paramount importance to counter climate change related adverse effects on the productivity of crops. In this multi-authored book, we present synthesis of information for developing strategies to combat plant stress. Our effort here is to present a judicious mixture of basic as well as applied research outlooks so as to interest workers in all areas of plant science. We trust that the information covered in this book would bridge the much-researched area of stress in plants with the much-needed information for evolving climate-ready crop cultivars to ensure food security in the future.

Book Bioprocessing of Plant In Vitro Systems

Download or read book Bioprocessing of Plant In Vitro Systems written by and published by . This book was released on 19?? with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Emerging Technologies for Biorefineries  Biofuels  and Value Added Commodities

Download or read book Emerging Technologies for Biorefineries Biofuels and Value Added Commodities written by Zhi-Hua Liu and published by Springer Nature. This book was released on 2021-04-30 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides in-depth coverage on the latest concepts, systems, and technologies that are being utilized in biorefineries for the production of biofuels and value-added commodities. Written by internationally recognized experts, the book provides a comprehensive overview of pretreatment technology for biorefineries and biofuels, enzymatic hydrolysis and fermentation technology for biofuel production, and lignin valorization for developing new products from waste lignin. The book will be a valuable resource for researchers and professionals working in process engineering, product engineering, material science, and systems and synthetic biology in the fields of biorefining, biofuel, biomaterials, environmental waste utilization, and biotechnology.

Book Switchgrass

    Book Details:
  • Author : Andrea Monti
  • Publisher : Springer Science & Business Media
  • Release : 2012-03-09
  • ISBN : 1447129032
  • Pages : 214 pages

Download or read book Switchgrass written by Andrea Monti and published by Springer Science & Business Media. This book was released on 2012-03-09 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The demand for renewable energies from biomass is growing steadily as policies are enacted to encourage such development and as industry increasingly sees an opportunity to develop bio-energy enterprises. Recent policy changes in the EU, USA and other countries are spurring interest in the cultivation of energy crops such as switchgrass. Switchgrass has gained and early lead in the race to find a biomass feedstock for energy production (and for the almost requisite need for bio-based products from such feedstocks). Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to the biology, physiology, breeding, culture and conversion of switchgrass as well as highlighting various environmental, economic and social benefits. Considering this potential energy source, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a crop with the potential to mitigate the risks of global warming by replacing fossil fuels. Including clear figures and tables to support discussions, Switchgrass: A Valuable Biomass Crop for Energy provides a solid reference for anyone with interest or investment in the development of bioenergy; researchers, policy makers and stakeholders will find this a key resource.