Download or read book Fibrations and Their Classification written by Petar Pavešić and published by . This book was released on 2013 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of fibration is one of the great unifying mathematical ideas. It was initially introduced around 1930 in geometry and topology, and gradually expanded into many other parts of mathematics. Together with fibre bundles (which precedeed fibrations), they give formal expression to the idea of a continuous family of spaces, and of operations on such families. This monograph contains an exposition of the fundamental ideas of the theory of fibrations with particular emphasis on their classification. It deals at length with various types of fibrations as defined by Hurewicz, Dold and Serre, as well as the quasifibrations of Dold and Thom. The relationship between these concepts is analyzed in depth, with examples and counter-examples given. One of the salient properties of fibre bundles is that they are classified by homotopy classes of maps into some special spaces called classifying spaces. The classifying theory for fibrations is presented both abstractly, through the theory of representable functors, and constructively, by describing various models, like those introduced by Dold and Lashof, and by Milgram and Steenrod. In the couple of decades following their intoduction, the growth of the theory of fibrations resulted in a plethora of similar and interrelated theories and classification results for vector bundles, general fibre bundles, and other types of fibre spaces. As a new organizational principle, Peter May invented the concept of F-fibrations that generalizes all of the above, and is at the same time sufficiently structured to admit workable classification objects. The second part of the book is dedicated to an in-depth discussion of the theory of F-fibrations. The book is reasonably self-contained and the reader is assumed to have only some knowledge of general topology and basic homotopy theory, including elementary properties of homotopy groups. However, one must be aware that the level of exposition is at some places more advanced, and for these a prior course in algebraic topology or in the theory of fibre bundles would be very helpful, both as a motivation for the problems that are studied, as well as a measure of the required mathematical sophistication. The book can be used both as a text-book or as a reference. Most chapters are concluded with historical notes, tracing the origins of the concepts and the developments related to the classification of fibre bundles and fibrations.
Download or read book Classifying Spaces and Fibrations written by J. Peter May and published by American Mathematical Soc.. This book was released on 1975 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The basic theory of fibrations is generalized to a context in which fibres, and maps on fibres, are constrained to lie in any preassigned category of spaces [script capital] F. Then axioms are placed on [script capital] F to allow the development of a theory of associated principal fibrations and, under several choices of additional hypotheses on [script capital] F, a classification theorem is proven for such fibrations.
Download or read book The Topology of Classical Groups and Related Topics written by S. Y. Husseini and published by CRC Press. This book was released on 1969 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Obstruction Theory written by H. J. Baues and published by Springer. This book was released on 2006-11-15 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fiber Bundles and Homotopy written by Dai Tamaki and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to fiber bundles and fibrations. But the ultimate goal is to make the reader feel comfortable with basic ideas in homotopy theory. The author found that the classification of principal fiber bundles is an ideal motivation for this purpose. The notion of homotopy appears naturally in the classification. Basic tools in homotopy theory such as homotopy groups and their long exact sequence need to be introduced. Furthermore, the notion of fibrations, which is one of three important classes of maps in homotopy theory, can be obtained by extracting the most essential properties of fiber bundles. The book begins with elementary examples and then gradually introduces abstract definitions when necessary. The reader is assumed to be familiar with point-set topology, but it is the only requirement for this book.
Download or read book Algebraic Surfaces and Holomorphic Vector Bundles written by Robert Friedman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.
Download or read book Parametrized Homotopy Theory written by J. Peter May and published by American Mathematical Soc.. This book was released on 2006 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops rigorous foundations for parametrized homotopy theory, which is the algebraic topology of spaces and spectra that are continuously parametrized by the points of a base space. It also begins the systematic study of parametrized homology and cohomology theories. The parametrized world provides the natural home for many classical notions and results, such as orientation theory, the Thom isomorphism, Atiyah and Poincare duality, transfer maps, the Adams and Wirthmuller isomorphisms, and the Serre and Eilenberg-Moore spectral sequences. But in addition to providing a clearer conceptual outlook on these classical notions, it also provides powerful methods to study new phenomena, such as twisted $K$-theory, and to make new constructions, such as iterated Thom spectra. Duality theory in the parametrized setting is particularly illuminating and comes in two flavors. One allows the construction and analysis of transfer maps, and a quite different one relates parametrized homology to parametrized cohomology. The latter is based formally on a new theory of duality in symmetric bicategories that is of considerable independent interest. The text brings together many recent developments in homotopy theory. It provides a highly structured theory of parametrized spectra, and it extends parametrized homotopy theory to the equivariant setting. The theory of topological model categories is given a more thorough treatment than is available in the literature. This is used, together with an interesting blend of classical methods, to resolve basic foundational problems that have no nonparametrized counterparts.
Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Download or read book Handbook of Geometric Topology written by R.B. Sher and published by Elsevier. This book was released on 2001-12-20 with total page 1145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.
Download or read book The Topological Classification of Stratified Spaces written by Shmuel Weinberger and published by University of Chicago Press. This book was released on 1994 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the theory for stratified spaces, along with important examples and applications, that is analogous to the surgery theory for manifolds. In the first expository account of this field, Weinberger provides topologists with a new way of looking at the classification theory of singular spaces with his original results. Divided into three parts, the book begins with an overview of modern high-dimensional manifold theory. Rather than including complete proofs of all theorems, Weinberger demonstrates key constructions, gives convenient formulations, and shows the usefulness of the technology. Part II offers the parallel theory for stratified spaces. Here, the topological category is most completely developed using the methods of "controlled topology." Many examples illustrating the topological invariance and noninvariance of obstructions and characteristic classes are provided. Applications for embeddings and immersions of manifolds, for the geometry of group actions, for algebraic varieties, and for rigidity theorems are found in Part III. This volume will be of interest to topologists, as well as mathematicians in other fields such as differential geometry, operator theory, and algebraic geometry.
Download or read book Poisson Geometry in Mathematics and Physics written by Giuseppe Dito and published by American Mathematical Soc.. This book was released on 2008 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.
Download or read book Groups of Homotopy Self Equivalences and Related Topics written by Ken-ichi Maruyama and published by American Mathematical Soc.. This book was released on 2001 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers the proceedings from the workshop held at the University of Milan (Italy) on groups of homotopy self-equivalences and related topics. The book comprises the articles relating current research on the group of homotopy self-equivalences, homotopy of function spaces, rational homotopy theory, classification of homotopy types, and equivariant homotopy theory. Mathematicians from many areas of the globe attended the workshops to discuss their research and to share ideas. Included are two specially-written articles, by J.W. Rutter, reviewing the work done in the area of homotopy self-equivalences since 1988. Included also is a bibliography of some 122 articles published since 1988 and a list of problems. This book is suitable for both advanced graduate students and researchers.
Download or read book Algebraic Topology written by Arunas Liulevicius and published by American Mathematical Soc.. This book was released on 1971 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Arithmetic and Geometry of K3 Surfaces and Calabi Yau Threefolds written by Radu Laza and published by Springer Science & Business Media. This book was released on 2013-06-12 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, research in K3 surfaces and Calabi–Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics—in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi–Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi–Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated. Unlike most other conferences, the 2011 Calabi–Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate students and other junior researchers, or as a guide to the subject.
Download or read book Birational Geometry Rational Curves and Arithmetic written by Fedor Bogomolov and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.
Download or read book Collected Papers of John Milnor written by John Willard Milnor and published by American Mathematical Soc.. This book was released on 1994 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Topology of Algebraic Curves written by Alex Degtyarev and published by Walter de Gruyter. This book was released on 2012-07-04 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph summarizes and extends a number of results on the topology of trigonal curves in geometrically ruled surfaces. An emphasis is given to various applications of the theory to a few related areas, most notably singular plane curves of small degree, elliptic surfaces, and Lefschetz fibrations (both complex and real), and Hurwitz equivalence of braid monodromy factorizations. The approach relies on a close relation between trigonal curves/elliptic surfaces, a certain class of ribbon graphs, and subgroups of the modular group, which provides a combinatorial framework for the study of geometric objects. A brief summary of the necessary auxiliary results and techniques used and a background of the principal problems dealt with are included in the text. The book is intended to researchers and graduate students in the field of topology of complex and real algebraic varieties.