EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Femtosecond Laser Ablation for Controlling Micro and Nano Structuration

Download or read book Femtosecond Laser Ablation for Controlling Micro and Nano Structuration written by David Bruneel and published by . This book was released on 2010 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Micro and nano structuring of metals using femtosecond laser ablation

Download or read book Micro and nano structuring of metals using femtosecond laser ablation written by Matthew Damian Hume Gill and published by . This book was released on 2006 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Femtosecond Laser Micromachining

Download or read book Femtosecond Laser Micromachining written by Roberto Osellame and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.

Book Laser Ablation in Liquids

Download or read book Laser Ablation in Liquids written by Guowei Yang and published by CRC Press. This book was released on 2012-02-22 with total page 1166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the fundamental concepts and physical and chemical aspects of pulsed laser ablation of solid targets in liquid environments and its applications in the preparation of nanomaterials and fabrication of nanostructures. The areas of focus include basic thermodynamic and kinetic processes of laser ablation in liquids, and its applic

Book Handbook of Laser Micro  and Nano Engineering

Download or read book Handbook of Laser Micro and Nano Engineering written by KOJI SUGIOKA. and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.

Book Optically Induced Nanostructures

Download or read book Optically Induced Nanostructures written by Karsten König and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-05-19 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.

Book Femtosecond Laser Material Processing for Micro  nano scale Fabrication and Biomedical Applications

Download or read book Femtosecond Laser Material Processing for Micro nano scale Fabrication and Biomedical Applications written by Hae Woon Choi and published by . This book was released on 2007 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Femtosecond laser ablation has interesting characteristics for micromachining, notably non-thermal interaction with materials, high peak intensity, precision and flexibility. In this dissertation, the potential of femtosecond laser ablation for fabrication of biomedical and electronic devices is studied. In a preliminary background discussion, some key literature regarding the basic physics and mechanisms that govern ultrafast laser pulse interaction with conductive materials and dielectric materials are summarized. In the dissertation work, results from systematic experiments were used characterize laser ablation of ITO (Indium Tin Oxide), stainless steel (hot embossing applications), polymers (PMMA, PDMS, PET, and PCL), glass, and fused quartz. Measured parameters and results include ablation threshold, damage threshold, surface roughness, single- and multiple-pulse ablation shapes and ablation efficiency. In addition to solid material, femtosecond laser light interaction with electrospun nano-fiber fiber mesh was analyzed and studied by optical property measurements. Ablation of channels in nano-fiber mesh was studied experimentally. Internal channel fabrication in glass and PMMA polymers was also demonstrated and studied experimentally. In summary, it is concluded that femtosecond laser ablation is a useful process for micromachining of materials to produce microfluidic channels commonly needed in biomedical devices such as micro-molecular magnetic separators and DNA stretching micro arrays. The surface roughness of ablated materials was found to be the primary issue for femtosecond laser fabrication of microfluid channels. Improved surface quality of channels by surface coating with HEMA polymer was demonstrated.

Book Characterization of Femtosecond Laser Ablation and Deposition

Download or read book Characterization of Femtosecond Laser Ablation and Deposition written by Sudipta Bera and published by LAP Lambert Academic Publishing. This book was released on 2010-05 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel femtosecond micromachining workstation that permits real-time measurement of ablation depth and transient reflectivity is demonstrated. This instrumentation is used to characterize two processes: micromachining of thin metal films, and laser induced forward transfer (LIFT). Spectral interferometry was incorporated in a femtosecond micromachining system to enable real-time visualization of micromachined features as they are written into thin metal films-low energy(pJ) femtosecond oscillator pulses are used to probe the sample as it is cut by high energy (uJ) pulses. Sub-wavelength depths are readily resolved using this technique, making it possible to monitor the integrity of micromachined structures as they are created. This technique can also be employed to characterize interesting processes such as laser induced forward transfer (LIFT) of thin metal films. LIFT essentially involves using a pulsed laser to pattern a structure by deposition as opposed to ablation. Using modest numerical apertures (0.65 or less) we have been able to produce submicron features using this method of femtosecond pulsed laser deposition.

Book Femtosecond Laser Matter Interaction

Download or read book Femtosecond Laser Matter Interaction written by Eugene G. Gamaly and published by CRC Press. This book was released on 2011-10-06 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive treatment of the interaction of femtosecond laser pulses with solids at nonrelativistic intensity. It connects phenomena from the subtle atomic motion on the nanoscale to the generation of extreme pressure and temperature in the interaction zone confined inside a solid. The femtosecond laser-matter interaction has already found numerous applications in industry, medicine, and materials science. However, there is no consensus on the interpretation of related phenomena. With mathematics kept to a minimum, this is a highly engaging and readable treatment for students and researchers in science and engineering. The book avoids complex mathematical formulae, and hence the content is accessible to nontechnical readers. Useful summaries after each chapter provide compressed information for quick estimates of major parameters in planned or performed experiments. The book connects the basic physics of femtosecond laser-solid interactions to a broad range of applications. Throught the text, basic assumptions are derived from the first principles, and new results and ideas are presented. From such analyses, a qualitative and predictive framework for the field emerges, the impact of which on applications is also discussed.

Book Micromachining

Download or read book Micromachining written by Zdravko Stanimirović and published by BoD – Books on Demand. This book was released on 2019-11-20 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: To present their work in the field of micromachining, researchers from distant parts of the world have joined their efforts and contributed their ideas according to their interest and engagement. Their articles will give you the opportunity to understand the concepts of micromachining of advanced materials. Surface texturing using pico- and femto-second laser micromachining is presented, as well as the silicon-based micromachining process for flexible electronics. You can learn about the CMOS compatible wet bulk micromachining process for MEMS applications and the physical process and plasma parameters in a radio frequency hybrid plasma system for thin-film production with ion assistance. Last but not least, study on the specific coefficient in the micromachining process and multiscale simulation of influence of surface defects on nanoindentation using quasi-continuum method provides us with an insight in modelling and the simulation of micromachining processes. The editors hope that this book will allow both professionals and readers not involved in the immediate field to understand and enjoy the topic.

Book Femtosecond Lasers

Download or read book Femtosecond Lasers written by Yuwen Zhang and published by . This book was released on 2013 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new research related to femtosecond laser ablation, coherent control, electronic and thermal processes, coloring, nanoscale heat transfer, and corneal refractive surgery. With laser-pulse durations of one quadrillionth of a second, femtosecond lasers are poised to change the way research is done in a variety of disciplines in science, engineering and medicine. The ability to remove material with minimal collateral damage may be the most striking feature that has not been matched by any other material processing technologies. With the processing power carried by each pulse entering pettawatts (1015 W) in less than 100 femtoseconds, femtosecond lasers can remove virtually any type of material in a few picoseconds while confining the process zone to within tens of nanometers. The result is clean cuts, strong welds, and precision destruction of small targets such as cancer cells with no injury to surrounding materials.

Book Femtosecond Laser Micromachining of Advanced Materials

Download or read book Femtosecond Laser Micromachining of Advanced Materials written by Qiumei Bian and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Femtosecond (fs) laser ablation possesses unique characteristics for micromachining, notably non-thermal interaction with materials, high peak intensity, precision and flexibility. In this dissertation, the potential of fs laser ablation for machining polyurea aerogel and scribing thin film solar cell interconnection grooves is studied. In a preliminary background discussion, some key literature regarding the basic physics and mechanisms that govern ultrafast laser pulse interaction with materials and laser micromachining are summarized. First, the fs laser pulses are used to micromachine polyurea aerogel. The experimental results demonstrate that high quality machining surface can be obtained by tuning the laser fluence and beam scanning speed, which provides insights for micromachining polymers with porous structures. Second, a new fs laser micro-drilling technique is developed to drill micro-holes in stainless steel, in which a hollow core fiber is employed to transmit laser pulses to the target position. The coupling efficiency between the laser and the fiber is investigated and found to be strongly related to pulse energy and pulse duration. Third, the fs laser with various energy, pulse durations, and scanning speeds has been utilized to pattern Indium Tin Oxide (ITO) glass for thin film solar cells. The groove width decreases with increasing pulse duration due to the shorter the pulse duration the more effective of the energy used to material removal. In order to fully remove ITO without damaging the glass, the beam scanning speed need to precisely be controlled. Fourth, fs laser has been utilized to scribe Molybdenum thin film on Polyimide (PI) flexible substrate for Copper Indium Gallium Selenide (CIGS) thin film solar cells. The experimental parameters and results including ablation threshold, single- and multiple-pulse ablation shapes and ablation efficiency were discussed in details. In order to utilize the advantages of the fs lasers, the fabrication process has to be optimized for thin film patterning and structuring applications concerning both efficiency and quality. A predictive 3D Two Temperature Model (TTM) was proposed to predict ablation characteristics and help to understand the fs laser metal ablation mechanisms. 3D temperature field evolution for both electrons and lattice were demonstrated. The ablation model provides an insight to the physical processes occurring during fs laser excitation of metals. Desired processing fluence and process speed regime can be predicted by calculating the ablation threshold, ablation rate and ablation crater geometry using the developed model.

Book Functionalization and Multi Dimensional Structure Fabrication Using Ultrafast Laser Direct Writing  FS LDW

Download or read book Functionalization and Multi Dimensional Structure Fabrication Using Ultrafast Laser Direct Writing FS LDW written by Sangmo Koo and published by . This book was released on 2016 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Femtosecond laser-direct writing (FS-LDW) can functionalize the surface of diverse device components, including cell culture plates and medical implants. Since FS-LDW is in essence a non-contact fabrication method, it allows the surface patterning and micro-/nano-machining of material with minimal mechanical/thermal deformation. Hence, micro-/nanofabrication and material processing by femtosecond laser has attracted intense interest. Ultrafast laser ablation using far-field optics in a tight focusing configuration offers substantial advantages for the direct, maskless and arbitrary patterning of various materials and curved surfaces, while maintaining high feature resolution. Patterned surfaces with nanoscale craters or ablated pattern on electrospinning fibrous scaffolds can control and direct the cell migration. Control of topographical features in the cellular microenvironment can be achieved by combining FS-LDW with new materials. Direct laser writing by multi-photon polymerization is a nonlinear optical technique that allows the fabrication of 3D structures with resolution beyond the diffraction limit (~100nm). Incorporation of self-assembled block-copolymer nanomaterials into such structure fabricated by two-photon polymerization and, produced mesoscale structures endowed with guided nanoscale patterns (~10nm). This new capability can be used in many applications, including advanced optical metamaterials as well as for efficient photovoltaic energy conversion. In contrast, using low numerical aperture objective lens, fast fibrous structure (high aspect ratio) fabrication is possible. Well-organized fibrous structure can be used for patient-/disease-specific drug testing platform. Femtosecond laser direct writing is promising technique that can induce surface (e.g., via ablation) or volumetric patterning in a serial fashion (multi-photon polymerization). We applied these techniques to design and control multi-functional platform fabrication. As a result, FS-LDW fabricated structures exhibit higher resolution fabrication, and efficient functionality (e.g., in controlling the migration on 2D and 3D structure / tuning of mechanical stiffness of structure / directed self-assembly of block copolymer / enhancement of fluidic mixing.

Book Fundamentals of Laser Assisted Micro  and Nanotechnologies

Download or read book Fundamentals of Laser Assisted Micro and Nanotechnologies written by Vadim P. Veiko and published by Springer. This book was released on 2014-05-19 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the state of the art of laser micro- and nanotechnology. The physical fundamentals of different processes and the application are presented. The book deals with different materials like phase change and memory alloys, thin films, polymers etc. New phenomena and mechanisms of laser-matter interaction in nano-domains are explained. This book is helpful for students, postgraduates, engineers and researches working not only in the field of laser microtechnology but also in high-tech industry, like photonics, microelectronics, information technology.

Book Laser Based Nano Fabrication and Nano Lithography

Download or read book Laser Based Nano Fabrication and Nano Lithography written by Koji Sugioka and published by MDPI. This book was released on 2018-12-07 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Laser-Based Nano Fabrication and Nano Lithography" that was published in Nanomaterials

Book Femtosecond Laser Micromachining of Polymer Surfaces

Download or read book Femtosecond Laser Micromachining of Polymer Surfaces written by Youssef Assaf and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Femtosecond (fs) laser micromachining is a single-step, contactless surface texturing method which can create hierarchical structures that present both micro- and nanoscale roughness. While fs laser-induced structures have been extensively studied on metals, very few publications have investigated their formation on polymer surfaces. It has recently been shown that homogeneous fs irradiation of a poly(tetrafluoroethylene) surface leads to the formation of a high surface area porous structure. Such a structure could be highly beneficial for several applications such as self-cleaning materials and biomedical implants. However, as of yet, no basis for the optimization of this novel topology exists since its optical and chemical properties and the mechanism behind its formation have not been investigated. Thus, in this thesis, a detailed investigation and characterization of femtosecond laser-induced structures on polymer surfaces was performed.By fitting several absorption models to ablation data, porous structure formation was determined to form as a consequence of explosive boiling and was observed to depend on the threshold fluence at machining conditions. For polymers with a sufficiently high threshold fluence, a minority of the incoming energy is converted into material ionization. Thus, the surface melt layer heats above the critical temperature for phase explosion and homogeneous bubble formation occurs. The quenching of the melt layer in between consecutive pulses leads to the formation of pores which are a remnant of the volume occupied by the bubbles during explosive boiling. Spectroscopy and X-ray photoelectron spectroscopy characterization at different wavelengths helped identify the parameters that affect the threshold fluence through incubation effects. Higher threshold fluences and lower incubation coefficients were observed during near-infrared irradiation as opposed to ultraviolet irradiation. This behavior at longer wavelengths was attributed to a shift from a multiphoton absorption mechanism at low pulse numbers to a linear absorption mechanism at higher pulse numbers. This effect was observed to be more significant for polymers that are susceptible to photooxidation.Crystallographic evidence of explosive boiling was measured by grazing incidence X-ray diffractometry. For high density poly(ethylene), laser micromachining was observed to induce a local decrease in crystallinity and the appearance of a monoclinic phase that is typically only stable at high temperatures and pressure. This confirmed that fs laser-induced polymer structures form from a quenched melt layer. In addition, the effect of viscoelastic melt properties on pore size was investigated. It was observed that for higher molecular weights (and thus higher viscosities), smaller pore sizes are achieved due to a decreased bubble growth rate during explosive boiling.Finally, a novel atmospheric pulsed laser deposition setup for the incorporation of nanoparticles into laser induced porous structures was developed. Through this technique, hydrophilic titanium oxide nanoclusters were incorporated into porous poly(ethylene terephthalate). By controlling the extent of nanoparticle coverage through the operating fluence, tunable wettability was achieved. Thus, this technique allows the optimization of fs laser induced structures for specific applications without compromising the porous topology." --

Book Laser Surface Modification of Biomaterials

Download or read book Laser Surface Modification of Biomaterials written by Rui Vilar and published by Woodhead Publishing. This book was released on 2016-04-15 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser Surface Modification of Biomaterials: Techniques and Applications covers this expanding field, which has many potential applications, including biomaterials. Laser surface modification of biomaterials enables the production of hybrid materials with different functionality in the bulk as well as the thin, sub-micrometer surface layer. This book will provide readers with a comprehensive review of the technology and its applications. Chapters in Part 1 look at the techniques and considerations of laser surface modification, while Part 2 reviews laser surface modification techniques of the most important classes of biomaterials, with a final set of chapters discussing application specific laser surface modification. - Offers a comprehensive review of laser surface modification techniques - Presents recent developments, fundamentals, and progress in laser surface modification - Reviews laser surface modification applications across a range of materials - Emphasizes applications in biomaterials