Download or read book Stability and Stabilization of Nonlinear Systems written by Iasson Karafyllis and published by Springer Science & Business Media. This book was released on 2011-04-02 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, the subject of nonlinear control systems analysis has grown rapidly and this book provides a simple and self-contained presentation of their stability and feedback stabilization which enables the reader to learn and understand major techniques used in mathematical control theory. In particular: the important techniques of proving global stability properties are presented closely linked with corresponding methods of nonlinear feedback stabilization; a general framework of methods for proving stability is given, thus allowing the study of a wide class of nonlinear systems, including finite-dimensional systems described by ordinary differential equations, discrete-time systems, systems with delays and sampled-data systems; approaches to the proof of classical global stability properties are extended to non-classical global stability properties such as non-uniform-in-time stability and input-to-output stability; and new tools for stability analysis and control design of a wide class of nonlinear systems are introduced. The presentational emphasis of Stability and Stabilization of Nonlinear Systems is theoretical but the theory’s importance for concrete control problems is highlighted with a chapter specifically dedicated to applications and with numerous illustrative examples. Researchers working on nonlinear control theory will find this monograph of interest while graduate students of systems and control can also gain much insight and assistance from the methods and proofs detailed in this book.
Download or read book Robust Adaptive Dynamic Programming written by Yu Jiang and published by John Wiley & Sons. This book was released on 2017-04-13 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive look at state-of-the-art ADP theory and real-world applications This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties. Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book: Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets Provides an overview of nonlinear control, machine learning, and dynamic control Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.
Download or read book Nonlinear and Adaptive Control written by Alessandro Astolfi and published by World Scientific. This book was released on 2006 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the main results achieved in a four-year European Project on nonlinear and adaptive control. The project involves leading researchers from top-notch institutions: Imperial College London (Prof A Astolfi), Lund University (Prof A Rantzer), Supelec Paris (Prof R Ortega), University of Technology of Compiegne (Prof R Lozano), Grenoble Polytechnic (Prof C Canudas de Wit), University of Twente (Prof A van der Schaft), Politecnico of Milan (Prof S Bittanti), and Polytechnic University of Valencia (Prof P Albertos).The book also provides an introduction to theoretical advances in nonlinear and adaptive control and an overview of novel applications of advanced control theory, particularly topics on the control of partially known systems, under-actuated systems, and bioreactors.
Download or read book Trends in Control written by Alberto Isidori and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the text of the plenary lectures and the mini-courses of the European Control Conference (ECC 95) held in Rome, Italy, September 5-September 8, 1995. In particular, the book includes nine essays in which a selected number of prominent authorities present their views on some of the most recent developments in the theory and practice of control systems design and three self-contained sets of lecture notes. Some of the essays are focused on the topic of robust control. The article by J. Ackermann describes how to robustly control the rotational motions of a vehicle, to the purpose of simplifying the driver's task. The contribution by H. K wakernaak presents a detailed discussion of the requirements that performance and robustness impose on control systems design and of the symmetric roles of sensitivity and complementary sensitivity functions. The article by P. Boulet, B. A. Francis, P. C . Hughes and T. Hong describes an experimental testbed facility, called Daisy, whose dynamics emulate those of a real large flexible space structure and whose purpose is to test advanced identification and control design methods. The article of K. Glover discusses recent advances in uncertain system modeling, analysis and design, with ref erence to a flight control case study that has been test flown. The other essays describe advances in fundamental problems of control theory. The article by V. A. Yakubovich is a survey of certain new infinite horizon linear-quadratic optimization problems. The contribution by A. S.
Download or read book Strict Feedback Nonlinear Systems written by Xianfu Zhang and published by Springer Nature. This book was released on 2023-01-13 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the research progress of the control design about strict-feedback nonlinear systems. A novel gain control design method is proposed, which greatly simplifies the construction procedure of controller for strict-feedback nonlinear systems. The control design problem of strict-feedback nonlinear systems is converted into the determination problem of gain parameters or the construction of dynamic gain equations. Therefore, the tedious iterative design procedure is effectively avoided. This book can be used as a reference for researchers in the field of control theory and engineers seeking advanced methods in practical control applications.
Download or read book Nonlinear and Adaptive Control with Applications written by Alessandro Astolfi and published by Springer Science & Business Media. This book was released on 2007-12-06 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors here provide a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. They employ a new tool based on the ideas of system immersion and manifold invariance. New algorithms are delivered for the construction of robust asymptotically-stabilizing and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes that are easier to tune than their counterparts obtained from Lyapunov redesign.
Download or read book High Gain Observers in Nonlinear Feedback Control written by Hassan H. Khalil and published by SIAM. This book was released on 2017-06-23 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: For over a quarter of a century, high-gain observers have been used extensively in the design of output feedback control of nonlinear systems. This book presents a clear, unified treatment of the theory of high-gain observers and their use in feedback control. Also provided is a discussion of the separation principle for nonlinear systems; this differs from other separation results in the literature in that recovery of stability as well as performance of state feedback controllers is given. The author provides a detailed discussion of applications of high-gain observers to adaptive control and regulation problems and recent results on the extended high-gain observers. In addition, the author addresses two challenges that face the implementation of high-gain observers: high dimension and measurement noise. Low-power observers are presented for high-dimensional systems. The effect of measurement noise is characterized and techniques to reduce that effect are presented. The book ends with discussion of digital implementation of the observers. Readers will find comprehensive coverage of the main results on high-gain observers; rigorous, self-contained proofs of all results; and numerous examples that illustrate and provide motivation for the results. The book is intended for engineers and applied mathematicians who design or research feedback control systems.
Download or read book Design of Nonlinear Control Systems with the Highest Derivative in Feedback written by Valery D. Yurkevich and published by World Scientific. This book was released on 2004 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book presents an analytical uniform design methodology of continuous-time or discrete-time nonlinear control system design which guarantees desired transient performances in the presence of plant parameter variations and unknown external disturbances. All results are illustrated with numerical simulations, their practical importance is highlighted, and they may be used for real-time control system design in robotics, mechatronics, chemical reactors, electrical and electro-mechanical systems as well as aircraft control systems. The book is easy reading and is suitable for teaching.
Download or read book Constructive Nonlinear Control written by R. Sepulchre and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Constructive Nonlinear Control presents a broad repertoire of constructive nonlinear designs not available in other works by widening the class of systems and design tools. Several streams of nonlinear control theory are merged and directed towards a constructive solution of the feedback stabilization problem. Analysis, geometric and asymptotic concepts are assembled as design tools for a wide variety of nonlinear phenomena and structures. Geometry serves as a guide for the construction of design procedures whilst analysis provides the robustness which geometry lacks. New recursive designs remove earlier restrictions on feedback passivation. Recursive Lyapunov designs for feedback, feedforward and interlaced structures result in feedback systems with optimality properties and stability margins. The design-oriented approach will make this work a valuable tool for all those who have an interest in control theory.
Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Download or read book Model Predictive Control in the Process Industry written by Eduardo F. Camacho and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.
Download or read book Applied Nonlinear Control written by Jean-Jacques E. Slotine and published by . This book was released on 1991 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, the authors present a global perspective on the methods available for analysis and design of non-linear control systems and detail specific applications. They provide a tutorial exposition of the major non-linear systems analysis techniques followed by a discussion of available non-linear design methods.
Download or read book Active Disturbance Rejection Control for Nonlinear Systems written by Bao-Zhu Guo and published by John Wiley & Sons. This book was released on 2017-05-01 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise, in-depth introduction to active disturbance rejection control theory for nonlinear systems, with numerical simulations and clearly worked out equations Provides the fundamental, theoretical foundation for applications of active disturbance rejection control Features numerical simulations and clearly worked out equations Highlights the advantages of active disturbance rejection control, including small overshooting, fast convergence, and energy savings
Download or read book Lectures in Feedback Design for Multivariable Systems written by Alberto Isidori and published by Springer. This book was released on 2016-08-12 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on methods that relate, in one form or another, to the “small-gain theorem”. It is aimed at readers who are interested in learning methods for the design of feedback laws for linear and nonlinear multivariable systems in the presence of model uncertainties. With worked examples throughout, it includes both introductory material and more advanced topics. Divided into two parts, the first covers relevant aspects of linear-systems theory, the second, nonlinear theory. In order to deepen readers’ understanding, simpler single-input–single-output systems generally precede treatment of more complex multi-input–multi-output (MIMO) systems and linear systems precede nonlinear systems. This approach is used throughout, including in the final chapters, which explain the latest advanced ideas governing the stabilization, regulation, and tracking of nonlinear MIMO systems. Two major design problems are considered, both in the presence of model uncertainties: asymptotic stabilization with a “guaranteed region of attraction” of a given equilibrium point and asymptotic rejection of the effect of exogenous (disturbance) inputs on selected regulated outputs. Much of the introductory instructional material in this book has been developed for teaching students, while the final coverage of nonlinear MIMO systems offers readers a first coordinated treatment of completely novel results. The worked examples presented provide the instructor with ready-to-use material to help students to understand the mathematical theory. Readers should be familiar with the fundamentals of linear-systems and control theory. This book is a valuable resource for students following postgraduate programs in systems and control, as well as engineers working on the control of robotic, mechatronic and power systems.
Download or read book Feedback Control Theory written by John C. Doyle and published by Courier Corporation. This book was released on 2013-04-09 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.
Download or read book Feedback Stabilization of Controlled Dynamical Systems written by Nicolas Petit and published by Springer. This book was released on 2017-03-23 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tribute to Professor Laurent Praly and follows on from a workshop celebrating the occasion of his 60th birthday. It presents new and unified visions of the numerous problems that Laurent Praly has worked on in his prolific career: adaptive control, output feedback and observers, stability and stabilization. His main contributions are the central topic of this book. The book collects contributions written by prominent international experts in the control community, addressing a rich variety of topics: emerging ideas, advanced applications, and theoretical concepts. Organized in three sections, the first section covers the field of adaptive control, where Laurent Praly started his career. The second section focuses on stabilization and output feedback, which is also the topic of the second half of his career. Lastly, the third section presents the emerging research that will form Laurent Praly’s scientific legacy.
Download or read book Truncated Predictor Feedback for Time Delay Systems written by Bin Zhou and published by Springer. This book was released on 2014-05-29 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated predictor feedback and predictor feedback The properties of the solutions to a class of parametric (differential and difference) Lyapunov matrix equations are presented in detail Detailed numerical examples and applications to the spacecraft rendezvous and formation flying problems are provided to demonstrate the usefulness of the presented theoretical results This book can be a useful resource for the researchers, engineers, and graduate students in the fields of control, applied mathematics, mechanical engineering, electrical engineering, and aerospace engineering.