Download or read book Federated Learning with Python written by Kiyoshi Nakayama PhD and published by Packt Publishing Ltd. This book was released on 2022-10-28 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the essential skills for building an authentic federated learning system with Python and take your machine learning applications to the next level Key FeaturesDesign distributed systems that can be applied to real-world federated learning applications at scaleDiscover multiple aggregation schemes applicable to various ML settings and applicationsDevelop a federated learning system that can be tested in distributed machine learning settingsBook Description Federated learning (FL) is a paradigm-shifting technology in AI that enables and accelerates machine learning (ML), allowing you to work on private data. It has become a must-have solution for most enterprise industries, making it a critical part of your learning journey. This book helps you get to grips with the building blocks of FL and how the systems work and interact with each other using solid coding examples. FL is more than just aggregating collected ML models and bringing them back to the distributed agents. This book teaches you about all the essential basics of FL and shows you how to design distributed systems and learning mechanisms carefully so as to synchronize the dispersed learning processes and synthesize the locally trained ML models in a consistent manner. This way, you'll be able to create a sustainable and resilient FL system that can constantly function in real-world operations. This book goes further than simply outlining FL's conceptual framework or theory, as is the case with the majority of research-related literature. By the end of this book, you'll have an in-depth understanding of the FL system design and implementation basics and be able to create an FL system and applications that can be deployed to various local and cloud environments. What you will learnDiscover the challenges related to centralized big data ML that we currently face along with their solutionsUnderstand the theoretical and conceptual basics of FLAcquire design and architecting skills to build an FL systemExplore the actual implementation of FL servers and clientsFind out how to integrate FL into your own ML applicationUnderstand various aggregation mechanisms for diverse ML scenariosDiscover popular use cases and future trends in FLWho this book is for This book is for machine learning engineers, data scientists, and artificial intelligence (AI) enthusiasts who want to learn about creating machine learning applications empowered by federated learning. You'll need basic knowledge of Python programming and machine learning concepts to get started with this book.
Download or read book Big Data over Networks written by Shuguang Cui and published by Cambridge University Press. This book was released on 2016-01-14 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the crucial interaction between big data and communication, social and biological networks using critical mathematical tools and state-of-the-art research.
Download or read book Federated Learning written by Qiang Yang and published by Springer Nature. This book was released on 2020-11-25 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Download or read book Building Android Apps in Python Using Kivy with Android Studio written by Ahmed Fawzy Mohamed Gad and published by Apress. This book was released on 2019-10-14 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Start building Python-based Android applications using Kivy with Android Studio. Through in-depth examples, this book teaches you everything you need to create your first Android application in Python and publish on Google Play. Building Android Apps in Python Using Kivy with Android Studio takes you through the basics of Kivy by discussing its application structure, widgets, and event handling. The KV language is then introduced for separating the logic and GUI by adding widgets within a KV file. You will then learn how to utilize Android camera using Kivy, build the HTTP server using Flask, and create and manage multiple screens to help you design your own applications. Through detailed step-by-step instructions, you will create your first multi-level cross-platform game that includes animation and sound effects. Following this, the process of converting the Kivy application into an Android application using Buildozer and Python-4-Android is covered in detail. You will then learn how to edit the generated Android Studio project into Android Studio by adding extensions to the original application. The widgets added in Kivy could be handled within Android Studio. Moreover, Android views could be added to enrich the Kivy application. The resulting Android application created with Kivy can be hosted on Google Play to download and install as a regular Android application. At the end, this book will give you the basic knowledge of Kivy needed to build cross-platform Android applications, produce an Android Studio project, and understand how it all works in detail. What You Will Learn Build cross-platform applications from scratch using Kivy in detailCreate a cross-platform interactive multi-level game from the ground upExamine the pipeline of building an Android app from the Python Kivy appUnderstand the structure of the Android Studio project produced by KivyRecognize how to extend the application within Android Studio by adding more Android views to the application main activity. Who This Book Is For Python developers with no previous experience in Kivy who are looking to create their first Android application completely in Python.
Download or read book Federated Learning written by Qiang Qiang Yang and published by Springer Nature. This book was released on 2022-06-01 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private? Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.
Download or read book Federated Learning Systems written by Muhammad Habib ur Rehman and published by Springer Nature. This book was released on 2021-06-11 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.
Download or read book Federated Learning From Algorithms To System Implementation written by Liefeng Bo and published by World Scientific. This book was released on 2024-08-16 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by researchers and practitioners who build cutting-edge federated learning applications to solve real-world problems, this book covers the spectrum of federated learning technology from concepts and application scenarios to advanced algorithms and finally system implementation in three parts. It provides a comprehensive review and summary of federated learning technology, as well as presenting numerous novel federated learning algorithms which no other books have summarized. The work also references the most recent papers, articles and reviews from the past several years to keep pace with the academic and industrial state of the art of federated learning.The first part lays a foundational understanding of federated learning by going through its definition and characteristics, and also possible application scenarios and related privacy protection technologies. The second part elaborates on some of the federated learning algorithms innovated by JD Technology which encompass both vertical and horizontal scenarios, including vertical federated tree models, linear regression, kernel learning, asynchronous methods, deep learning, homomorphic encryption, and reinforcement learning. The third and final part shifts in scope to federated learning systems — namely JD Technology's own FedLearn system — by discussing its design and implementation using gRPC, in addition to specific performance optimization techniques plus integration with blockchain technology.This book will serve as a great reference for readers who are experienced in federated learning algorithms, building privacy-preserving machine learning applications or solving real-world problems with privacy-restricted scenarios.
Download or read book Handbook on Federated Learning written by Saravanan Krishnan and published by CRC Press. This book was released on 2024-01-09 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mobile, wearable, and self-driving telephones are just a few examples of modern distributed networks that generate enormous amount of information every day. Due to the growing computing capacity of these devices as well as concerns over the transfer of private information, it has become important to process the part of the data locally by moving the learning methods and computing to the border of devices. Federated learning has developed as a model of education in these situations. Federated learning (FL) is an expert form of decentralized machine learning (ML). It is essential in areas like privacy, large-scale machine education and distribution. It is also based on the current stage of ICT and new hardware technology and is the next generation of artificial intelligence (AI). In FL, central ML model is built with all the data available in a centralised environment in the traditional machine learning. It works without problems when the predictions can be served by a central server. Users require fast responses in mobile computing, but the model processing happens at the sight of the server, thus taking too long. The model can be placed in the end-user device, but continuous learning is a challenge to overcome, as models are programmed in a complete dataset and the end-user device lacks access to the entire data package. Another challenge with traditional machine learning is that user data is aggregated at a central location where it violates local privacy policies laws and make the data more vulnerable to data violation. This book provides a comprehensive approach in federated learning for various aspects.
Download or read book Grokking Deep Learning written by Andrew W. Trask and published by Simon and Schuster. This book was released on 2019-01-23 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide
Download or read book Federated Learning written by Lam M. Nguyen and published by Elsevier. This book was released on 2024-02-09 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Federated Learning: Theory and Practi ce provides a holisti c treatment to federated learning as a distributed learning system with various forms of decentralized data and features. Part I of the book begins with a broad overview of opti mizati on fundamentals and modeling challenges, covering various aspects of communicati on effi ciency, theoretical convergence, and security. Part II featuresemerging challenges stemming from many socially driven concerns of federated learning as a future public machine learning service. Part III concludes the book with a wide array of industrial applicati ons of federated learning, as well as ethical considerations, showcasing its immense potential for driving innovation while safeguarding sensitive data.Federated Learning: Theory and Practi ce provides a comprehensive and accessible introducti on to federated learning which is suitable for researchers and students in academia, and industrial practitioners who seek to leverage the latest advance in machine learning for their entrepreneurial endeavors. - Presents the fundamentals and a survey of key developments in the field of federated learning - Provides emerging, state-of-the art topics that build on fundamentals - Contains industry applications - Gives an overview of visions of the future
Download or read book Federated Learning for IoT Applications written by Satya Prakash Yadav and published by Springer Nature. This book was released on 2022-02-02 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users’ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Download or read book Federated Learning for Internet of Medical Things written by Pronaya Bhattacharya and published by CRC Press. This book was released on 2023-06-16 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book intends to present emerging Federated Learning (FL)-based architectures, frameworks, and models in Internet of Medical Things (IoMT) applications. It intends to build on the basics of the healthcare industry, the current data sharing requirements, and security and privacy issues in medical data sharing. Once IoMT is presented, the book shifts towards the proposal of privacy-preservation in IoMT, and explains how FL presents a viable solution to these challenges. The claims are supported through lucid illustrations, tables, and examples that present effective and secured FL schemes, simulations, and practical discussion on use-case scenarios in a simple manner. The book intends to create opportunities for healthcare communities to build effective FL solutions around the presented themes, and to support work in related areas that will benefit from reading the book. It also intends to present breakthroughs and foster innovation in FL-based research, specifically in the IoMT domain. The emphasis of this book is on understanding the contributions of IoMT to healthcare analytics, and its aim is to provide insights including evolution, research directions, challenges, and the way to empower healthcare services through federated learning. The book also intends to cover the ethical and social issues around the recent advancements in the field of decentralized Artificial Intelligence. The book is mainly intended for undergraduates, post-graduates, researchers, and healthcare professionals who wish to learn FL-based solutions right from scratch, and build practical FL solutions in different IoMT verticals.
Download or read book Essential Federated Learning written by Robert Johnson and published by HiTeX Press. This book was released on 2024-10-27 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Essential Federated Learning: AI at the Edge" offers a comprehensive exploration into the transformative domain of federated learning, an innovative approach reshaping the AI landscape by enabling data decentralization. This book demystifies the foundational concepts of federated learning, capturing its potential to increase privacy, enhance data security, and empower industries across sectors such as healthcare, finance, and beyond. By keeping data localized, federated learning minimizes privacy concerns while leveraging the power and capability of edge computing. Each chapter meticulously builds upon the last, guiding readers from basic principles to advanced applications, providing a balanced understanding of technical architectures, algorithms, and real-world implementations. Rich with insights into the ethical and social implications of federated learning, this book addresses the pressing challenges and future directions that are critical for its evolution. Topics such as privacy preservation, bias mitigation, and regulatory compliance are thoroughly examined, offering a holistic view of how federated learning can be applied responsibly and effectively. Whether you're a researcher, practitioner, or policy-maker, "Essential Federated Learning: AI at the Edge" offers the essential knowledge needed to harness the advantages of this cutting-edge technology, ensuring readers are well-equipped to navigate the rapidly expanding landscape of AI and edge computing.
Download or read book TinyML written by Pete Warden and published by O'Reilly Media. This book was released on 2019-12-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
Download or read book Federated Learning Techniques And Its Application In The Healthcare Industry written by H L Gururaj and published by World Scientific. This book was released on 2024-05-28 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Federated Learning is currently an emerging technology in the field of machine learning. Federated Learning is a structure which trains a centralized model for a given assignment, where the data is de-centralized across different edge devices or servers. This enables preservation of the confidentiality of data on various edge devices, as only the updated outcomes of the models are shared with the centralized model. This means the data can remain on each edge device, while we can still train a model using that data.Federated Learning has greatly increased the potential to transmute data in the healthcare industry, enabling healthcare professionals to improve treatment of patients.This book comprises chapters on applying Federated models in the field of healthcare industry.Federated Learning mainly concentrates on securing the privacy of data by training local data in a shared global model without putting the training data in a centralized location. The importance of federated learning lies in its innumerable uses in health care that ranges from maintaining the privacy of raw data of the patients, discover clinically alike patients, forecasting hospitalization due to cardiac events impermanence and probable solutions to the same. The goal of this edited book is to provide a reference guide to the theme.
Download or read book Federated Learning written by M. Irfan Uddin and published by CRC Press. This book was released on 2024-09-06 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Federated Learning: Unlocking the Power of Collaborative Intelligence is a definitive guide to the transformative potential of federated learning. This book delves into federated learning principles, techniques, and applications, and offers practical insights and real-world case studies to showcase its capabilities and benefits. The book begins with a survey of the fundamentals of federated learning and its significance in the era of privacy concerns and data decentralization. Through clear explanations and illustrative examples, the book presents various federated learning frameworks, architectures, and communication protocols. Privacy-preserving mechanisms are also explored, such as differential privacy and secure aggregation, offering the practical knowledge needed to address privacy challenges in federated learning systems. This book concludes by highlighting the challenges and emerging trends in federated learning, emphasizing the importance of trust, fairness, and accountability, and provides insights into scalability and efficiency considerations. With detailed case studies and step-by-step implementation guides, this book shows how to build and deploy federated learning systems in real-world scenarios – such as in healthcare, finance, Internet of things (IoT), and edge computing. Whether you are a researcher, a data scientist, or a professional exploring the potential of federated learning, this book will empower you with the knowledge and practical tools needed to unlock the power of federated learning and harness the collaborative intelligence of distributed systems. Key Features: Provides a comprehensive guide on tools and techniques of federated learning Highlights many practical real-world examples Includes easy-to-understand explanations
Download or read book Federated Learning written by Jayakrushna Sahoo and published by CRC Press. This book was released on 2024-09-20 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book provides an in-depth understanding of federated learning, a new and increasingly popular learning paradigm that decouples data collection and model training via multi-party computation and model aggregation. The volume explores how federated learning integrates AI technologies, such as blockchain, machine learning, IoT, edge computing, and fog computing systems, allowing multiple collaborators to build a robust machine-learning model using a large dataset. It highlights the capabilities and benefits of federated learning, addressing critical issues such as data privacy, data security, data access rights, and access to heterogeneous data. The volume first introduces the general concepts of machine learning and then summarizes the federated learning system setup and its associated terminologies. It also presents a basic classification of FL, the application of FL for various distributed computing scenarios, an integrated view of applications of software-defined networks, etc. The book also explores the role of federated learning in the Internet of Medical Things systems as well. The book provides a pragmatic analysis of strategies for developing a communication-efficient federated learning system. It also details the applicability of blockchain with federated learning on IoT-based systems. It provides an in-depth study of FL-based intrusion detection systems, discussing their taxonomy and functioning and showcasing their superiority over existing systems. The book is unique in that it evaluates the privacy and security aspects in federated learning. The volume presents a comprehensive analysis of some of the common challenges, proven threats, and attack strategies affecting FL systems. Special coverage on protected shot-based federated learning for facial expression recognition is also included. This comprehensive book, Federated Learning: Principles, Paradigms, and Applications, will enable research scholars, information technology professionals, and distributed computing engineers to understand various aspects of federated learning concepts and computational techniques for real-life implementation.