Download or read book Federated Learning Techniques And Its Application In The Healthcare Industry written by H L Gururaj and published by World Scientific. This book was released on 2024-05-28 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Federated Learning is currently an emerging technology in the field of machine learning. Federated Learning is a structure which trains a centralized model for a given assignment, where the data is de-centralized across different edge devices or servers. This enables preservation of the confidentiality of data on various edge devices, as only the updated outcomes of the models are shared with the centralized model. This means the data can remain on each edge device, while we can still train a model using that data.Federated Learning has greatly increased the potential to transmute data in the healthcare industry, enabling healthcare professionals to improve treatment of patients.This book comprises chapters on applying Federated models in the field of healthcare industry.Federated Learning mainly concentrates on securing the privacy of data by training local data in a shared global model without putting the training data in a centralized location. The importance of federated learning lies in its innumerable uses in health care that ranges from maintaining the privacy of raw data of the patients, discover clinically alike patients, forecasting hospitalization due to cardiac events impermanence and probable solutions to the same. The goal of this edited book is to provide a reference guide to the theme.
Download or read book Federated Learning written by Qiang Yang and published by Springer Nature. This book was released on 2020-11-25 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Download or read book Federated Learning Techniques and Its Application in the Healthcare Industry written by H L Gururaj and published by World Scientific Publishing Company. This book was released on 2024-07-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Federated Learning is currently an emerging technology in the field of machine learning. Federated Learning is a structure which trains a centralized model for a given assignment, where the data is de-centralized across different edge devices or servers. This enables preservation of the confidentiality of data on various edge devices, as only the updated outcomes of the models are shared with the centralized model. This means the data can remain on each edge device, while we can still train a model using that data.Federated Learning has greatly increased the potential to transmute data in the healthcare industry, enabling healthcare professionals to improve treatment of patients.This book comprises chapters on applying Federated models in the field of healthcare industry.Federated Learning mainly concentrates on securing the privacy of data by training local data in a shared global model without putting the training data in a centralized location. The importance of federated learning lies in its innumerable uses in health care that ranges from maintaining the privacy of raw data of the patients, discover clinically alike patients, forecasting hospitalization due to cardiac events impermanence and probable solutions to the same. The goal of this edited book is to provide a reference guide to the theme.
Download or read book Federated Learning Systems written by Muhammad Habib ur Rehman and published by Springer Nature. This book was released on 2021-06-11 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.
Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Download or read book Pioneering Smart Healthcare 5 0 with IoT Federated Learning and Cloud Security written by Hassan, Ahdi and published by IGI Global. This book was released on 2024-02-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Healthcare sector is experiencing a mindset change with the advent of Healthcare 5.0, bringing forth improved patient care and system efficiency. However, this transformation poses significant challenges. The growing digitization of healthcare systems raises concerns about the security and privacy of patient data, making seamless data sharing and collaboration increasingly complex tasks. Additionally, as the volume of healthcare data expands exponentially, efficient handling and analysis become vital for optimizing healthcare delivery and patient outcomes. Addressing these multifaceted issues is crucial for healthcare professionals, IT experts, data scientists, and researchers seeking to fully harness the potential of Healthcare 5.0. Pioneering Smart Healthcare 5.0 with IoT, Federated Learning, and Cloud Security presents a comprehensive solution to the pressing challenges in the digitalized healthcare industry. This research book dives into the principles of Healthcare 5.0 and explores practical implementation through cloud computing, data analytics, and federated learning. Readers will gain profound insights into the role of cloud computing in managing vast amounts of healthcare data, such as electronic health records and real-time analytics. Cloud-based frameworks, architectures, and relevant use cases are explored to optimize healthcare delivery and improve patient outcomes.
Download or read book Federated Learning for IoT Applications written by Satya Prakash Yadav and published by Springer Nature. This book was released on 2022-02-02 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users’ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Download or read book Federated Learning for Smart Communication using IoT Application written by Kaushal Kishor and published by CRC Press. This book was released on 2024-10-30 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: The effectiveness of federated learning in high‐performance information systems and informatics‐based solutions for addressing current information support requirements is demonstrated in this book. To address heterogeneity challenges in Internet of Things (IoT) contexts, Federated Learning for Smart Communication using IoT Application analyses the development of personalized federated learning algorithms capable of mitigating the detrimental consequences of heterogeneity in several dimensions. It includes case studies of IoT‐based human activity recognition to show the efficacy of personalized federated learning for intelligent IoT applications. Features: • Demonstrates how federated learning offers a novel approach to building personalized models from data without invading users’ privacy. • Describes how federated learning may assist in understanding and learning from user behavior in IoT applications while safeguarding user privacy. • Presents a detailed analysis of current research on federated learning, providing the reader with a broad understanding of the area. • Analyses the need for a personalized federated learning framework in cloud‐edge and wireless‐edge architecture for intelligent IoT applications. • Comprises real‐life case illustrations and examples to help consolidate understanding of topics presented in each chapter. This book is recommended for anyone interested in federated learning‐based intelligent algorithms for smart communications.
Download or read book Federated Learning and Privacy Preserving in Healthcare AI written by Lilhore, Umesh Kumar and published by IGI Global. This book was released on 2024-05-02 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of artificial intelligence (AI) in data-driven medicine has revolutionized healthcare, presenting practitioners with unprecedented tools for diagnosis and personalized therapy. However, this progress comes with a critical concern: the security and privacy of sensitive patient data. As healthcare increasingly leans on AI, the need for robust solutions to safeguard patient information has become more pressing than ever. Federated Learning and Privacy-Preserving in Healthcare AI emerges as the definitive solution to balancing medical progress with patient data security. This carefully curated volume not only outlines the challenges of federated learning but also provides a roadmap for implementing privacy-preserving AI systems in healthcare. By decentralizing the training of AI models, federated learning mitigates the risks associated with centralizing patient data, ensuring that critical information never leaves its original location. Aimed at healthcare professionals, AI experts, policymakers, and academics, this book not only delves into the technical aspects of federated learning but also fosters a collaborative approach to address the multifaceted challenges at the intersection of healthcare and AI.
Download or read book Federated Learning and AI for Healthcare 5 0 written by Hassan, Ahdi and published by IGI Global. This book was released on 2023-12-18 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Healthcare sector is evolving with Healthcare 5.0, promising better patient care and efficiency. However, challenges like data security and analysis arise due to increased digitization. Federated Learning and AI for Healthcare 5.0 offers solutions, explaining cloud computing's role in managing data and advocating for security measures. It explores federated learning's use in maintaining data privacy during analysis, presenting practical cases for implementation. The book also addresses emerging tech like quantum computing and blockchain-based services, envisioning an innovative Healthcare 5.0. It empowers healthcare professionals, IT experts, and data scientists to leverage these technologies for improved patient care and system efficiency, making Healthcare 5.0 secure and patient centric.
Download or read book Model Optimization Methods for Efficient and Edge AI written by Pethuru Raj Chelliah and published by John Wiley & Sons. This book was released on 2025-01-09 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive overview of the fledgling domain of federated learning (FL), explaining emerging FL methods, architectural approaches, enabling frameworks, and applications Model Optimization Methods for Efficient and Edge AI explores AI model engineering, evaluation, refinement, optimization, and deployment across multiple cloud environments (public, private, edge, and hybrid). It presents key applications of the AI paradigm, including computer vision (CV) and Natural Language Processing (NLP), explaining the nitty-gritty of federated learning (FL) and how the FL method is helping to fulfill AI model optimization needs. The book also describes tools that vendors have created, including FL frameworks and platforms such as PySyft, Tensor Flow Federated (TFF), FATE (Federated AI Technology Enabler), Tensor/IO, and more. The first part of the text covers popular AI and ML methods, platforms, and applications, describing leading AI frameworks and libraries in order to clearly articulate how these tools can help with visualizing and implementing highly flexible AI models quickly. The second part focuses on federated learning, discussing its basic concepts, applications, platforms, and its potential in edge systems (such as IoT). Other topics covered include: Building AI models that are destined to solve several problems, with a focus on widely articulated classification, regression, association, clustering, and other prediction problems Generating actionable insights through a variety of AI algorithms, platforms, parallel processing, and other enablers Compressing AI models so that computational, memory, storage, and network requirements can be substantially reduced Addressing crucial issues such as data confidentiality, data access rights, data protection, and access to heterogeneous data Overcoming cyberattacks on mission-critical software systems by leveraging federated learning
Download or read book AI for Healthcare with Keras and Tensorflow 2 0 written by Anshik and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how AI impacts the healthcare ecosystem through real-life case studies with TensorFlow 2.0 and other machine learning (ML) libraries. This book begins by explaining the dynamics of the healthcare market, including the role of stakeholders such as healthcare professionals, patients, and payers. Then it moves into the case studies. The case studies start with EHR data and how you can account for sub-populations using a multi-task setup when you are working on any downstream task. You also will try to predict ICD-9 codes using the same data. You will study transformer models. And you will be exposed to the challenges of applying modern ML techniques to highly sensitive data in healthcare using federated learning. You will look at semi-supervised approaches that are used in a low training data setting, a case very often observed in specialized domains such as healthcare. You will be introduced to applications of advanced topics such as the graph convolutional network and how you can develop and optimize image analysis pipelines when using 2D and 3D medical images. The concluding section shows you how to build and design a closed-domain Q&A system with paraphrasing, re-ranking, and strong QnA setup. And, lastly, after discussing how web and server technologies have come to make scaling and deploying easy, an ML app is deployed for the world to see with Docker using Flask. By the end of this book, you will have a clear understanding of how the healthcare system works and how to apply ML and deep learning tools and techniques to the healthcare industry. You will: Get complete, clear, and comprehensive coverage of algorithms and techniques related to case studies Look at different problem areas within the healthcare industry and solve them in a code-first approach Explore and understand advanced topics such as multi-task learning, transformers, and graph convolutional networks Understand the industry and learn ML .
Download or read book Intelligent Biomedical Technologies and Applications for Healthcare 5 0 written by Lalit Garg and published by Elsevier. This book was released on 2024-10-17 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Biomedical Technologies and Applications for Healthcare 5.0, Volume Sixteen covers artificial health intelligence, biomedical image analysis, 5G, the Internet of Medical Things, intelligent healthcare systems, and extended health intelligence (EHI). This volume contains four sections. The focus of the first section is health data analytics and applications. The second section covers research on information exchange and knowledge sharing. The third section is on the Internet of Things (IoT) and the Internet of Everything (IoE)-based solutions. The final section focuses on the implementation, assessment, adoption, and management of healthcare informatics solutions. This new volume in the Advances in Ubiquitous Sensing Applications for Healthcare series focuses on innovative methods in the healthcare industry and will be useful for biomedical engineers, researchers, and students working in interdisciplinary fields of research. This volume bridges these newly developing technologies and the medical community in the rapidly developing healthcare world, introducing them to modern healthcare advances such as EHI and Smart Healthcare Systems. - Provides a comprehensive technological review of cutting-edge information in the wide domain of Healthcare 5.0 - Introduces concepts that combine computational methods, network standards, and healthcare systems to provide a much improved, more affordable experience delivered by healthcare services to its customers - Presents innovative solutions utilizing informatics to deal with various healthcare technology issues
Download or read book Robotics and Automation in Industry 4 0 written by Nidhi Sindhwani and published by CRC Press. This book was released on 2024-02-09 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the innovative aspects of smart industries and intelligent technologies involving Robotics and Automation. It discusses the challenges in the design of autonomous robots and provides an understanding of how different systems ommunicate with each other, allowing cooperation with other human systems and operators in real time. Robotics and Automation in Industry 4.0: Smart Industries and Intelligent Technologies offers research articles, flow charts, algorithms, and examples based on daily life in automation and robotics related to the building of Industry 4.0. It presents disruptive technology applications related to Smart Industries and talks about how robotics is an important Industry 4.0 technology that offers a wide range of capabilities and has improved automation systems by doing repetitive tasks with more accuracy and at a lower cost. The book discusses how frontline healthcare staff can evaluate, monitor, and treat patients from a safe distance by using robotic and telerobotic systems to minimize the risk of infectious disease transmission. Artificial intelligence (AI) and machine learning (ML) are looked at and the book offers a comprehensive overview of the key challenges surrounding the Internet of Things (IoT) and AI synergy, including current and future applications with significant societal value. An ideal read for scientists, research scholars, entrepreneurs, industrialists, academicians, and various other professionals who are interested in exploring innovations in the applicational areas of AI, IoT, and ML related to Robotics and Automation.
Download or read book Cybersecurity Measures for Logistics Industry Framework written by Jhanjhi, Noor Zaman and published by IGI Global. This book was released on 2024-02-14 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global supply chains are becoming more customer-centric and sustainable thanks to next-generation logistics management technologies. Automating logistics procedures greatly increases the productivity and efficiency of the workflow. There is a need, however, to create flexible and dynamic relationships among numerous stakeholders and the transparency and traceability of the supply chain. The digitalization of the supply chain process has improved these relationships and transparency; however, it has also created opportunities for cybercriminals to attack the logistics industry. Cybersecurity Measures for Logistics Industry Framework discusses the environment of the logistics industry in the context of new technologies and cybersecurity measures. Covering topics such as AI applications, inventory management, and sustainable computing, this premier reference source is an excellent resource for business leaders, IT managers, security experts, students and educators of higher education, librarians, researchers, and academicians.
Download or read book Privacy Preservation and Secured Data Storage in Cloud Computing written by D., Lakshmi and published by IGI Global. This book was released on 2023-10-25 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: As cloud services become increasingly popular, safeguarding sensitive data has become paramount. Privacy Preservation and Secured Data Storage in Cloud Computing is a comprehensive book that addresses the critical concerns surrounding privacy and security in the realm of cloud computing. Beginning with an introduction to cloud computing and its underlying technologies, the book explores various models of cloud service delivery. It then delves into the challenges and risks associated with storing and processing data in the cloud, including data breaches, insider threats, and third-party access. The book thoroughly examines techniques and tools to enhance privacy and security in the cloud, covering encryption, access control, data anonymization, and other measures to mitigate risks. Additionally, it explores emerging trends and opportunities in cloud security, such as blockchain-based solutions, homomorphic encryption, and other cutting-edge technologies poised to transform data privacy and security. This invaluable resource offers practical advice and in-depth analysis for cloud service providers, IT professionals, researchers, and students seeking to understand best practices for securing data in the cloud.
Download or read book Federated Deep Learning for Healthcare written by Amandeep Kaur and published by CRC Press. This book was released on 2024-10-02 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a practical guide to federated deep learning for healthcare including fundamental concepts, framework, and the applications comprising domain adaptation, model distillation, and transfer learning. It covers concerns in model fairness, data bias, regulatory compliance, and ethical dilemmas. It investigates several privacy-preserving methods such as homomorphic encryption, secure multi-party computation, and differential privacy. It will enable readers to build and implement federated learning systems that safeguard private medical information. Features: Offers a thorough introduction of federated deep learning methods designed exclusively for medical applications. Investigates privacy-preserving methods with emphasis on data security and privacy. Discusses healthcare scaling and resource efficiency considerations. Examines methods for sharing information among various healthcare organizations while retaining model performance. This book is aimed at graduate students and researchers in federated learning, data science, AI/machine learning, and healthcare.