EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Feasibility Study and Optimization Analysis of Using a PVT Collector for a Reverse Osmosis Based Water Desalination Plant

Download or read book Feasibility Study and Optimization Analysis of Using a PVT Collector for a Reverse Osmosis Based Water Desalination Plant written by Jessica Adriana Bane and published by . This book was released on 2017 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Power Generation Systems

Download or read book Advanced Power Generation Systems written by Yatish T. Shah and published by CRC Press. This book was released on 2022-12-21 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Power Generation Systems: Thermal Sources evaluates advances made in heat-to-power technologies for conventional combustion heat and nuclear heat, along with natural sources of geothermal, solar, and waste heat generated from the use of different sources. These advances will render the landscape of power generation significantly different in just a few decades. This book covers the commercial viability of advanced technologies and identifies where more work needs to be done. Since power is the future of energy, these technologies will remain sustainable over a long period of time. Key Features Covers power generation and heat engines Details photovoltaics, thermo-photovoltaics, and thermoelectricity Includes discussion of nuclear and renewable energy as well as waste heat This book will be useful for advanced students, researchers, and professionals interested in power generation and energy industries.

Book Desalination  with a Grain of Salt

Download or read book Desalination with a Grain of Salt written by Heather Cooley and published by . This book was released on 2006-01-01 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solar Desalination Technology

Download or read book Solar Desalination Technology written by Anil Kumar and published by Springer. This book was released on 2019-04-23 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest developments and advances in solar desalination technology, including the concept, design, testing, modeling, economics and innovation. The chapters in this volume are contributed by leading international researchers and are based on original research material. The contents of this volume will be of interest to researchers, professionals, and policymakers alike.

Book Polygeneration Systems

Download or read book Polygeneration Systems written by Francesco Calise and published by Academic Press. This book was released on 2021-09-22 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: The support for polygeneration lies in the possibility of integrating different technologies into a single energy system, to maximize the utilization of both fossil and renewable fuels. A system that delivers multiple forms of energy to users, maximizing the overall efficiency makes polygeneration an emerging and viable option for energy consuming industries. Polygeneration Systems: Design, Processes and Technologies provides simple and advanced calculation techniques to evaluate energy, environmental and economic performance of polygeneration systems under analysis. With specific design guidelines for each type of polygeneration system and experimental performance data, referred both to single components and overall systems, this title covers all aspects of polygeneration from design to operation, optimization and practical implementation. Giving different aspects of both fossil and non-fossil fuel based polygeneration and the wider area of polygeneration processes, this book helps readers learn general principles to specific system design and development through analysis of case studies, examples, simulation characteristics and thermodynamic and economic data. Detailed economic data for technology to assist developing feasibility studies regarding the possible application of polygeneration technologies Offers a comprehensive list of all current numerical and experimental results of polygeneration available Includes simulation models, cost figures, demonstration projects and test standards for designers and researchers to validate their own models and/or to test the reliability of their results

Book Photovoltaic Solar Energy Conversion

Download or read book Photovoltaic Solar Energy Conversion written by Shiva Gorjian and published by Academic Press. This book was released on 2020-07-17 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic Solar Energy Conversion - Technologies, Applications and Environmental Impacts features comprehensive and up-to-date knowledge on the photovoltaic solar energy conversion technology and describes its different aspects in the context of most recent scientific and technological advances. It also provides an insight into future developments in this field by covering four distinct topics include "PV Cells and Modules", "Applications of PV Systems", "Life Cycle and Environmental Impacts" and "PV Market and Policies". An up-to-date reference book on the advances of photovoltaic solar energy conversion technology Describes different aspects of PV and PVT technologies in a comprehensive way Provides information on design, development, and monitoring of PV systems Covers applications of PV and PVT systems in the urban, industry, and agriculture sectors Features new concepts, environmental impacts, market and policies of the PV technology

Book Seawater Desalination

Download or read book Seawater Desalination written by Andrea Cipollina and published by Springer Science & Business Media. This book was released on 2009-12-24 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: A growing proportion of the world’s population is dependent on Seawater Desalination as a source of fresh water for both potable and civil use. One of the main drawbacks of conventional desalination technologies is the substantial energy requirement, which is facing cost increases in the global energy market. "Seawater Desalination" presents an overview of conventional and non-conventional technologies, with a particular focus on the coupling of renewable energies with desalination processes. The first section of this book presents, in a technical but reader-friendly way, an overview of currently-used desalination processes, from thermal to membrane processes, highlighting the relevant technical features, advantages and disadvantages, and development potential. It also gives a rapid insight into the economic aspects of fresh water production from seawater. The second section of the book presents novel processes which use Renewable Energies for fresh water production. From the first solar still evaporators, which artificially reproduced the natural cycle of water, technology has progressed to develop complex systems to harness energy from the sun, wind, tides, waves, etc. and then to use this energy to power conventional or novel desalination processes. Most of these processes are still at a preliminary stage of development, but some are already being cited as examples in remote areas, where they are proving to be valuable in solving the problems of water scarcity. A rapid growth in these technologies is foreseen in the coming years. This book provides a unique foundation, within the context of present and future sustainability, for professionals, technicians, managers, and private and public institutions operating in the area of fresh water supply.

Book A Modular Design Architecture for Application to Community scale Photovoltaic powered Reverse Osmosis Systems

Download or read book A Modular Design Architecture for Application to Community scale Photovoltaic powered Reverse Osmosis Systems written by Amy Marlou Bilton and published by . This book was released on 2013 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Access to safe, clean drinking water is a major challenge for many communities. These communities are often near seawater and/or brackish groundwater sources, making desalination a possible solution. Unfortunately, desalination is energy intensive and a reliable, inexpensive power supply is also challenging for remote locations. Photovoltaic reverse osmosis systems (PVRO) can be used to provide water for underserved communities. A feasibility study which demonstrates the economic viability of such systems is discussed here. PVRO systems are assembled from mass-produced modular components. This approach reduces manufacturing costs. However, designing a system optimized for a specific location is difficult. For even a small inventory of components, the number of design choices is enormous. A designer with significant expertise is required to tailor a PVRO system for a given location, putting this technology out of reach of many communities. This thesis develops a modular design architecture which can be implemented in a computer program to enable non-experts to configure systems from inventories of modular components. This architecture is not limited to PVRO systems, but can also be used to design other systems composed of modular components such as cars, electronics, and computers. The method uses a hierarchy of filters to limit the design space based on design principles and calculations. The system is then configured from the reduced design space using optimization methods and detailed system models. In this thesis, the modular design architecture is implemented for PVRO systems. A set of detailed physics-based system models are developed to enable this process. A novel method of representing a PVRO system using a graph is developed to enable rapid evaluation of different system configurations. This modeling technique is validated using the MIT Experimental PVRO system constructed as part of this research. A series of case studies are conducted to validate the modular design approach for PVRO systems. The first set of case studies considers a deterministic solar input and water demand. The design goal is to determine the lowest cost system that meets the water demand requirements. It is shown that the method is able to tailor systems for a wide range of locations and water demands from a large system inventory. The validity of these solutions is demonstrated by simulating a custom designed system in the wrong location. Another case study shows that the approach can be used to determine market potential of new components. The second set of case studies considers variations in the solar radiation and water demand. The design goal is to determine the lowest cost PVRO system that meets the water demand profile with a specified probability. Two methods that use historical solar insolation and water demand to account for variations are presented. The first method characterizes the historical data and develops models to synthetically generate solar insolation and water demand profiles, and then simulates the system performance over 100 years to calculate the loss-of-water probability. In the second method, distributions of solar radiation and water demand are calculated from historical data and used to directly calculate the probability of running out of water in the worst month of the year. Both methods are implemented and shown to produce feasible system configurations. The direct calculation method is shown to reduce the required computation time and is suitable for different systems with variable inputs.

Book Renewable Energy Technologies for Water Desalination

Download or read book Renewable Energy Technologies for Water Desalination written by Hacene Mahmoudi and published by CRC Press. This book was released on 2017-07-14 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a thorough overview of the latest trends and challenges in renewable energy technologies applications for water desalination, with an emphasis on environmental concerns and sustainable development. Emphasis is on the various uses of renewable energy, as well as economics & scale-up, government subsidies & regulations, and environmental concerns. It provides an indication on how renewable energy technologies are rapidly emerging with the promise of economic and environmental viability for desalination. Further it gives a clear indication on how exactly to accelerate the expansion and commercialization of novel water production systems powered by renewable energies and in what manner environmental concerns may be minimized. This book is all-inclusive and wide-ranging and directed at decision makers in government, industry and the academic world as well as students.

Book Renewable Energy Desalination

Download or read book Renewable Energy Desalination written by Bekele Debele Negewo and published by World Bank Publications. This book was released on 2012-09-26 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book looks at water availability and water demand in various sectors till 2050, presenting a methodology to prioritize options both on the demand and on the supply side, with a special focus on renewable energy desalination.

Book New Technologies for Seawater Desalination Using Nuclear Energy

Download or read book New Technologies for Seawater Desalination Using Nuclear Energy written by and published by . This book was released on 2015-03-11 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Oceanic Abstracts

Download or read book Oceanic Abstracts written by and published by . This book was released on 1997 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Efficient Desalination by Reverse Osmosis

Download or read book Efficient Desalination by Reverse Osmosis written by Stewart Burn and published by IWA Publishing. This book was released on 2015-09-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early applications of desalination were small-scale plants deploying a range of technologies. However with the technological developments in Reverse Osmosis, most new plants use this technology because it has a proven history of use and low energy and capital costs compared with other available desalination technologies. This has led to the recent trend for larger seawater desalination plants in an effort to further reduce costs, and 1000 MLD seawater desalination plants are projected by 2020. Efficient Desalination by Reverse Osmosis recognises that desalination by reverse osmosis has progressed significantly over the last decades and provides an up to date review of the state of the art for the reverse osmosis process. It covers issues that arise from desalination operations, environmental issues and ideas for research that will bring further improvements in this technology. Efficient Desalination by Reverse Osmosis provides a complete guide to best practice from pre-treatment through to project delivery. Editors: Stewart Burn, Visiting Scientist, CSIRO Manufacturing. Adjunct Professor, Institute of Sustainability and Innovation, Victoria University. Adjunct Professor, Department of Civil, Environmental and Chemical Engineering, RMIT University. Stephen Gray, Director, Institute of Sustainability and Innovation, Victoria University.

Book Fundamentals of Chemical Engineering Thermodynamics

Download or read book Fundamentals of Chemical Engineering Thermodynamics written by Themis Matsoukas and published by Pearson Education. This book was released on 2013 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Chemical Engineering Thermodynamics is the clearest and most well-organized introduction to thermodynamics theory and calculations for all chemical engineering undergraduates. This brand-new text makes thermodynamics far easier to teach and learn. Drawing on his award-winning courses at Penn State, Dr. Themis Matsoukas organizes the text for more effective learning, focuses on "why" as well as "how," offers imagery that helps students conceptualize the equations, and illuminates thermodynamics with relevant examples from within and beyond the chemical engineering discipline. Matsoukas presents solved problems in every chapter, ranging from basic calculations to realistic safety and environmental applications.

Book Future of solar photovoltaic

Download or read book Future of solar photovoltaic written by International Renewable Energy Agency IRENA and published by International Renewable Energy Agency (IRENA). This book was released on 2019-11-01 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study presents options to fully unlock the world’s vast solar PV potential over the period until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.

Book Autonomous Control and Membrane Maintenance Optimization of Photovoltaic Reverse Osmosis Systems

Download or read book Autonomous Control and Membrane Maintenance Optimization of Photovoltaic Reverse Osmosis Systems written by Aditya Sarvanand Bhujle and published by . This book was released on 2013 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The supply of clean water in remote and off-grid areas has been a major global challenge for humanity. Over 780 million people lack access to clean water [1]. However, a significant fraction of these people have access to undrinkable surface, brackish or sea water. A promising solution to this problem is to use photovoltaic powered reverse osmosis (PVRO) systems to purify this unsafe water to produce clean drinking water. However, high initial capital costs and a lack of commercial viability have prohibited these systems for commercial and daily use. For this approach to be feasible and reach large-scale commercial viability, PVRO systems need to be energy efficient and cost-competitive compared with reverse osmosis systems powered by conventional sources, such as diesel engines or electricity from the grid. The costs and energy consumption in a PVRO system can be significantly decreased by maximizing water production and minimizing the effects of membrane degradation to extend system life. The membrane degradation considered here is the fouling phenomenon in which suspended solids and dissolved substances collect on the surface and within the pores of the membrane thereby reducing its permeability This thesis describes an innovative approach to autonomously controlling and optimizing community scale PVRO systems by controlling membrane degradation due to fouling, using a self-optimizing condition based maintenance algorithm. Additionally, by exploiting the energy compliance of PVRO elements and actively controlling the individual components of the system, water production can be maximized. The compliance in a PVRO system has been found to significantly affect PVRO performance by reducing system efficiency and resulting in long startup delays in producing clean water. In this thesis, a controllable recovery ratio concept system has been presented. By actively controlling the PVRO system, an improvement of 47% over the existing performance of a fixed recovery ratio system has been shown in simulations. Use of condition based maintenance strategies show an improvement of over 10% in cumulative clean water production compared to scheduled quarterly maintenance and 58% over 1 year in cumulative clean water production compared to the case without any maintenance. This is interesting since typical community scale and point of use systems can be and are operated without periodic maintenance [2]. Combining the optimal power control and condition-based maintenance strategies, an improvement in water production of 85 % is shown for a July day in Boston over the MIT PVRO system. Finally, a self-optimizing condition based maintenance algorithm is proposed as the optimal solution to control membrane degradation due to fouling.