Download or read book The Mechanics of Earthquakes and Faulting written by Christopher H. Scholz and published by Cambridge University Press. This book was released on 2002-05-02 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of earthquakes and faulting processes has developed significantly since publication of the successful first edition of this book in 1990. This revised edition, first published in 2002, was therefore thoroughly up-dated whilst maintaining and developing the two major themes of the first edition. The first of these themes is the connection between fault and earthquake mechanics, including fault scaling laws, the nature of fault populations, and how these result from the processes of fault growth and interaction. The second major theme is the central role of the rate-state friction laws in earthquake mechanics, which provide a unifying framework within which a wide range of faulting phenomena can be interpreted. With the inclusion of two chapters explaining brittle fracture and rock friction from first principles, this book is written at a level which will appeal to graduate students and research scientists in the fields of seismology, physics, geology, geodesy and rock mechanics.
Download or read book Faulting Friction and Earthquake Mechanics written by Chris J. Marone and published by Birkhauser. This book was released on 1994 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1992 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Living on an Active Earth written by National Research Council and published by National Academies Press. This book was released on 2003-09-22 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.
Download or read book Publications of the Geological Survey written by Geological Survey (U.S.) and published by . This book was released on 1983 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Summaries of Technical Reports written by and published by . This book was released on 1978 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Geocomplexity and the Physics of Earthquakes written by John Rundle and published by American Geophysical Union. This book was released on 2000-01-10 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 120. Earthquakes in urban centers are capable of causing enormous damage. The January 16, 1995 Kobe, Japan earthquake was only a magnitude 6.9 event and yet produced an estimated $200 billion loss. Despite an active earthquake prediction program in Japan, this event was a complete surprise. Similar scenarios are possible in Los Angeles, San Francisco, Seattle, and other urban centers around the Pacific plate boundary. The development of forecast or prediction methodologies for these great damaging earthquakes has been complicated by the fact that the largest events repeat at irregular intervals of hundreds to thousands of years, resulting in a limited historical record that has frustrated phenomenological studies. The papers in this book describe an emerging alternative approach, which is based on a new understanding of earthquake physics arising from the construction and analysis of numerical simulations. With these numerical simulations, earthquake physics now can be investigated in numerical laboratories. Simulation data from numerical experiments can be used to develop theoretical understanding that can be subsequently applied to observed data. These methods have been enabled by the information technology revolution, in which fundamental advances in computing and communications are placing vast computational resources at our disposal.
Download or read book Thermo Poroelasticity and Geomechanics written by A. P. S. Selvadurai and published by Cambridge University Press. This book was released on 2016-10-27 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Investigations of multi-physical processes in geomaterials have gained increasing attention due to the ongoing interest in solving complex geoenvironmental problems. This book provides a comprehensive exposition of the classical theory of thermo-poroelasticity, complemented by complete examples to problems in thermo-poromechanics that are used to validate computational results from multi-physics codes used in practice. The methodologies offer an insight into real-life problems related to modern environmental geosciences, including nuclear waste management, geologic sequestration of greenhouse gases to mitigate climate change, and the impact of energy resources recovery on groundwater resources. A strong focus is placed on analytical approaches to benchmark the accuracy of the computational approaches that are ultimately used in real-life problems. The extensive coverage of both theory and applications in thermo-poroelasticity and geomechanics provides a unified presentation of the topics, making this an accessible and invaluable resource for researchers, students or practitioners in the field.
Download or read book Fault Zone Dynamic Processes written by Marion Y. Thomas and published by John Wiley & Sons. This book was released on 2017-06-09 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquakes are some of the most dynamic features of the Earth. This multidisciplinary volume presents an overview of earthquake processes and properties including the physics of dynamic faulting, fault fabric and mechanics, physical and chemical properties of fault zones, dynamic rupture processes, and numerical modeling of fault zones during seismic rupture. This volume examines questions such as: • What are the dynamic processes recorded in fault gouge? • What can we learn about rupture dynamics from laboratory experiments? • How do on-fault and off-fault properties affect seismic ruptures? • How do fault zones evolve over time? Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture is a valuable resource for scientists, researchers and students from across the geosciences interested in the earthquakes processes.
Download or read book Foundations of Modern Global Seismology written by Charles J. Ammon and published by Academic Press. This book was released on 2020-10-13 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Global Seismology, Second Edition, is a complete, self-contained primer on seismology, featuring extensive coverage of all related aspects—from observational data through prediction—and emphasizing the fundamental theories and physics governing seismic waves, both natural and anthropogenic. Based on thoroughly class-tested material, the text provides a unique perspective on Earth's large-scale internal structure and dynamic processes, particularly earthquake sources, and the application of theory to the dynamic processes of the earth's upper layer. This insightful new edition is designed for accessibility and comprehension for graduate students entering the field.Exploration seismologists will also find it an invaluable resource on topics such as elastic-wave propagation, seismic instrumentation, and seismogram analysis. - Includes more than 400 illustrations, from both recent and traditional research articles, to help readers visualize mathematical relationships, as well as boxed features to explain advanced topics - Offers incisive treatments of seismic waves, waveform evaluation and modeling, and seismotectonics, as well as quantitative treatments of earthquake source mechanics and numerous examples of modern broadband seismic recordings - Covers current seismic instruments and networks and demonstrates modern waveform inversion methods - Includes extensive, updated references for further reading new to this edition - Features reorganized chapters split into two sections, beginning with introductory content such as tectonics and seismogram analysis, and moving on to more advanced topics, including seismic wave excitation and propagation, multivariable and vector calculus, and tensor approaches - Completely updated references and figures to bring the text up to date Includes all-new sections on recent advancements and to enhance examples and understanding Split into shorter chapters to allow more flexibility for instructors and easier access for researchers, and includes exercises
Download or read book Treatise on Geophysics written by and published by Elsevier. This book was released on 2015-04-17 with total page 5604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Treatise on Geophysics, Second Edition, is a comprehensive and in-depth study of the physics of the Earth beyond what any geophysics text has provided previously. Thoroughly revised and updated, it provides fundamental and state-of-the-art discussion of all aspects of geophysics. A highlight of the second edition is a new volume on Near Surface Geophysics that discusses the role of geophysics in the exploitation and conservation of natural resources and the assessment of degradation of natural systems by pollution. Additional features include new material in the Planets and Moon, Mantle Dynamics, Core Dynamics, Crustal and Lithosphere Dynamics, Evolution of the Earth, and Geodesy volumes. New material is also presented on the uses of Earth gravity measurements. This title is essential for professionals, researchers, professors, and advanced undergraduate and graduate students in the fields of Geophysics and Earth system science. Comprehensive and detailed coverage of all aspects of geophysics Fundamental and state-of-the-art discussions of all research topics Integration of topics into a coherent whole
Download or read book The Seismogenic Zone of Subduction Thrust Faults written by Timothy H. Dixon and published by Columbia University Press. This book was released on 2007-09-20 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subduction zones, one of the three types of plate boundaries, return Earth's surface to its deep interior. Because subduction zones are gently inclined at shallow depths and depress Earth's temperature gradient, they have the largest seismogenic area of any plate boundary. Consequently, subduction zones generate Earth's largest earthquakes and most destructive tsunamis. As tragically demonstrated by the Sumatra earthquake and tsunami of December 2004, these events often impact densely populated coastal areas and cause large numbers of fatalities. While scientists have a general understanding of the seismogenic zone, many critical details remain obscure. This volume attempts to answer such fundamental concerns as why some interplate subduction earthquakes are relatively modest in rupture length (greater than 100 km) while others, such as the great (M greater than 9) 1960 Chile, 1964 Alaska, and 2004 Sumatra events, rupture along 1000 km or more. Contributors also address why certain subduction zones are fully locked, accumulating elastic strain at essentially the full plate convergence rate, while others appear to be only partially coupled or even freely slipping; whether these locking patterns persist through the seismic cycle; and what is the role of sediments and fluids on the incoming plate. Nineteen papers written by experts in a variety of fields review the most current lab, field, and theoretical research on the origins and mechanics of subduction zone earthquakes and suggest further areas of exploration. They consider the composition of incoming plates, laboratory studies concerning sediment evolution during subduction and fault frictional properties, seismic and geodetic studies, and regional scale deformation. The forces behind subduction zone earthquakes are of increasing environmental and societal importance.
Download or read book Proceedings of the International Workshop on the Nojima Fault Core and Borehole Data Analysis November 22 23 1999 Tsukuba Japan written by and published by . This book was released on 2000 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Unconventional Reservoir Geomechanics written by Mark D. Zoback and published by Cambridge University Press. This book was released on 2019-05-16 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the US shale gas revolution in 2005, the development of unconventional oil and gas resources has gathered tremendous pace around the world. This book provides a comprehensive overview of the key geologic, geophysical, and engineering principles that govern the development of unconventional reservoirs. The book begins with a detailed characterization of unconventional reservoir rocks: their composition and microstructure, mechanical properties, and the processes controlling fault slip and fluid flow. A discussion of geomechanical principles follows, including the state of stress, pore pressure, and the importance of fractures and faults. After reviewing the fundamentals of horizontal drilling, multi-stage hydraulic fracturing, and stimulation of slip on pre-existing faults, the key factors impacting hydrocarbon production are explored. The final chapters cover environmental impacts and how to mitigate hazards associated with induced seismicity. This text provides an essential overview for students, researchers, and industry professionals interested in unconventional reservoirs.
Download or read book Faulting Fracturing and Igneous Intrusion in the Earth s Crust written by David Healy and published by Geological Society of London. This book was released on 2012 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geologists have long grappled with understanding the mechanical origins of rock deformation. Stress regimes control the nucleation, growth and reactivation of faults and fractures; induce seismic activity; affect the transport of magma; and modulate structural permeability, thereby influencing the redistribution of hydrothermal and hydrocarbon fluids. Experimentalists endeavour to recreate deformation structures observed in nature under controlled stress conditions. Earth scientists studying earthquakes will attempt to monitor or deduce stress changes in the Earth as it actively deforms. All are building upon the pioneering research and concepts of Ernest Masson Anderson, dating back to the start of the twentieth century. This volume celebrates Anderson's legacy, with 14 original research papers that examine faulting and seismic hazard; structural inheritance; the role of local and regional stress fields; low angle faults and the role of pore fluids; supplemented by reviews of Andersonian approaches and a reprint of his classic paper of 1905--
Download or read book Fault Zone Properties and Earthquake Rupture Dynamics written by Eiichi Fukuyama and published by Academic Press. This book was released on 2009-04-24 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dynamics of the earthquake rupture process are closely related to fault zone properties which the authors have intensively investigated by various observations in the field as well as by laboratory experiments. These include geological investigation of the active and fossil faults, physical and chemical features obtained by the laboratory experiments, as well as the seismological estimation from seismic waveforms. Earthquake dynamic rupture can now be modeled using numerical simulations on the basis of field and laboratory observations, which should be very useful for understanding earthquake rupture dynamics.Features:* First overview of new and improved techniques in the study of earthquake faulting* Broad coverage* Full colorBenefits:* A must-have for all geophysicists who work on earthquake dynamics* Single resource for all aspects of earthquake dynamics (from lab measurements to seismological observations to numerical modelling)* Bridges the disciplines of seismology, structural geology and rock mechanics* Helps readers to understand and interpret graphs and mapsAlso has potential use as a supplementary resource for upper division and graduate geophysics courses.
Download or read book Computational Earthquake Science Part I written by Andrea Donnellan and published by Birkhäuser. This book was released on 2012-12-06 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exciting developments in earthquake science have benefited from new observations, improved computational technologies, and improved modeling capabilities. Designing models of the earthquake of the earthquake generation process is a grand scientific challenge due to the complexity of phenomena and range of scales involved from microscopic to global. Such models provide powerful new tools for the study of earthquake precursory phenomena and the earthquake cycle. Through workshops, collaborations and publications the APEC Cooperation for Earthquake Simulations (ACES) aims to develop realistic supercomputer simulation models for the complete earthquake generation process, thus providing a "virtual laboratory" to probe earthquake behavior. Part I of the book covers microscopic simulations, scaling physics and earthquake generation and cycles. This part also focuses on plate processes and earthquake generation from a macroscopic standpoint.