EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fast Multipole Boundary Element Method

Download or read book Fast Multipole Boundary Element Method written by Yijun Liu and published by Cambridge University Press. This book was released on 2009-08-24 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fast multipole method is one of the most important algorithms in computing developed in the 20th century. Along with the fast multipole method, the boundary element method (BEM) has also emerged as a powerful method for modeling large-scale problems. BEM models with millions of unknowns on the boundary can now be solved on desktop computers using the fast multipole BEM. This is the first book on the fast multipole BEM, which brings together the classical theories in BEM formulations and the recent development of the fast multipole method. Two- and three-dimensional potential, elastostatic, Stokes flow, and acoustic wave problems are covered, supplemented with exercise problems and computer source codes. Applications in modeling nanocomposite materials, bio-materials, fuel cells, acoustic waves, and image-based simulations are demonstrated to show the potential of the fast multipole BEM. Enables students, researchers, and engineers to learn the BEM and fast multipole method from a single source.

Book Fast Multipole Methods for the Helmholtz Equation in Three Dimensions

Download or read book Fast Multipole Methods for the Helmholtz Equation in Three Dimensions written by Nail A Gumerov and published by Elsevier. This book was released on 2005-01-27 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume in the Elsevier Series in Electromagnetism presents a detailed, in-depth and self-contained treatment of the Fast Multipole Method and its applications to the solution of the Helmholtz equation in three dimensions. The Fast Multipole Method was pioneered by Rokhlin and Greengard in 1987 and has enjoyed a dramatic development and recognition during the past two decades. This method has been described as one of the best 10 algorithms of the 20th century. Thus, it is becoming increasingly important to give a detailed exposition of the Fast Multipole Method that will be accessible to a broad audience of researchers. This is exactly what the authors of this book have accomplished. For this reason, it will be a valuable reference for a broad audience of engineers, physicists and applied mathematicians. The Only book that provides comprehensive coverage of this topic in one location Presents a review of the basic theory of expansions of the Helmholtz equation solutions Comprehensive description of both mathematical and practical aspects of the fast multipole method and it's applications to issues described by the Helmholtz equation

Book Fast Multipole Boundary Element Method

Download or read book Fast Multipole Boundary Element Method written by Yijun Liu and published by Cambridge University Press. This book was released on 2009-08-24 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: First book on the fast multipole BEM, bringing together classical theory in BEM formulations and the fast multipole method.

Book Introduction to the Fast Multipole Method

Download or read book Introduction to the Fast Multipole Method written by Victor Anisimov and published by CRC Press. This book was released on 2019-12-06 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Fast Multipole Method introduces the reader to the theory and computer implementation of the Fast Multipole Method. It covers the topics of Laplace’s equation, spherical harmonics, angular momentum, the Wigner matrix, the addition theorem for solid harmonics, and lattice sums for periodic boundary conditions, along with providing a complete, self-contained explanation of the math of the method, so that anyone having an undergraduate grasp of calculus should be able to follow the material presented. The authors derive the Fast Multipole Method from first principles and systematically construct the theory connecting all the parts. Key Features Introduces each topic from first principles Derives every equation presented, and explains each step in its derivation Builds the necessary theory in order to understand, develop, and use the method Describes the conversion from theory to computer implementation Guides through code optimization and parallelization

Book Many Body Tree Methods in Physics

Download or read book Many Body Tree Methods in Physics written by Susanne Pfalzner and published by Cambridge University Press. This book was released on 1996-10-13 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the fast N-body algorithms used in many branches of computational physics.

Book Brain and Human Body Modeling 2020

Download or read book Brain and Human Body Modeling 2020 written by Sergey N. Makarov and published by Springer Nature. This book was released on 2021 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 41st Annual International Conference of the IEEE EMBS, took place between July 23 and 27, 2019, in Berlin, Germany. The focus was on "Biomedical engineering ranging from wellness to intensive care." This conference provided an opportunity for researchers from academia and industry to discuss a variety of topics relevant to EMBS and hosted the 4th Annual Invited Session on Computational Human Models. At this session, a bevy of research related to the development of human phantoms was presented, together with a substantial variety of practical applications explored through simulation.

Book The Multilevel Fast Multipole Algorithm  MLFMA  for Solving Large Scale Computational Electromagnetics Problems

Download or read book The Multilevel Fast Multipole Algorithm MLFMA for Solving Large Scale Computational Electromagnetics Problems written by Ozgur Ergul and published by John Wiley & Sons. This book was released on 2014-04-22 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examples Covers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objects Discusses applications including scattering from airborne targets, scattering from red blood cells, radiation from antennas and arrays, metamaterials etc. Is written by authors who have more than 25 years experience on the development and implementation of MLFMA The book will be useful for post-graduate students, researchers, and academics, studying in the areas of computational electromagnetics, numerical analysis, and computer science, and who would like to implement and develop rigorous simulation environments based on MLFMA.

Book Introduction to Quantum Biology

Download or read book Introduction to Quantum Biology written by Victor Anisimov and published by CRC Press. This book was released on 2016-08-15 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the theory and methodology of quantum-mechanical modeling of chemical and biological systems. Given the immense complexity of such systems, there is a constant search for new methods. The goal of this text is to derive approximate (semi-empirical) methods to address this class of problems and to provide insight for their continued development. The authors cover such important topics as molecular dynamics, high performance computing, free energy calculations, statistical mechanics, long-range electrostatics, and many-electron systems. They also discuss applications for water salvation, chemical reactions, conformational sampling, and structure relaxation.

Book Periodic Boundary Conditions and the Error controlled Fast Multipole Method

Download or read book Periodic Boundary Conditions and the Error controlled Fast Multipole Method written by Ivo Kabadshow and published by Forschungszentrum Jülich. This book was released on 2012 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Methods for Electromagnetic Phenomena

Download or read book Computational Methods for Electromagnetic Phenomena written by Wei Cai and published by Cambridge University Press. This book was released on 2013-01-03 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book of its kind to cover a wide range of computational methods for electromagnetic phenomena, from atomistic to continuum scales, this integrated and balanced treatment of mathematical formulations, algorithms and the underlying physics enables us to engage in innovative and advanced interdisciplinary computational research.

Book Fast and Efficient Algorithms in Computational Electromagnetics

Download or read book Fast and Efficient Algorithms in Computational Electromagnetics written by Weng Cho Chew and published by Artech House Publishers. This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here's a cutting-edge resource that brings you up-to-date with all the recent advances in computational electromagnetics. You get the most-current information available on the multilevel fast multipole algorithm in both the time and frequency domains, as well as the latest developments in fast algorithms for low frequencies and specialized structures, such as the planar and layered media. These algorithms solve large electromagnetics problems with shorter turn around time, using less computer memory.

Book Meshfree Approximation Methods with MATLAB

Download or read book Meshfree Approximation Methods with MATLAB written by Gregory E. Fasshauer and published by World Scientific. This book was released on 2007 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meshfree approximation methods are a relatively new area of research. This book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods. It places emphasis on a hands-on approach that includes MATLAB routines for all basic operations.

Book Software for Exascale Computing   SPPEXA 2016 2019

Download or read book Software for Exascale Computing SPPEXA 2016 2019 written by Hans-Joachim Bungartz and published by Springer Nature. This book was released on 2020-07-30 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest.

Book The Method of Moments in Electromagnetics

Download or read book The Method of Moments in Electromagnetics written by Walton C. Gibson and published by CRC Press. This book was released on 2021-09-06 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Method of Moments in Electromagnetics, Third Edition details the numerical solution of electromagnetic integral equations via the Method of Moments (MoM). Previous editions focused on the solution of radiation and scattering problems involving conducting, dielectric, and composite objects. This new edition adds a significant amount of material on new, state-of-the art compressive techniques. Included are new chapters on the Adaptive Cross Approximation (ACA) and Multi-Level Adaptive Cross Approximation (MLACA), advanced algorithms that permit a direct solution of the MoM linear system via LU decomposition in compressed form. Significant attention is paid to parallel software implementation of these methods on traditional central processing units (CPUs) as well as new, high performance graphics processing units (GPUs). Existing material on the Fast Multipole Method (FMM) and Multi-Level Fast Multipole Algorithm (MLFMA) is also updated, blending in elements of the ACA algorithm to further reduce their memory demands. The Method of Moments in Electromagnetics is intended for students, researchers, and industry experts working in the area of computational electromagnetics (CEM) and the MoM. Providing a bridge between theory and software implementation, the book incorporates significant background material, while presenting practical, nuts-and-bolts implementation details. It first derives a generalized set of surface integral equations used to treat electromagnetic radiation and scattering problems, for objects comprising conducting and dielectric regions. Subsequent chapters apply these integral equations for progressively more difficult problems such as thin wires, bodies of revolution, and two- and three-dimensional bodies. Radiation and scattering problems of many different types are considered, with numerical results compared against analytical theory as well as measurements.

Book Numerical Methods  Think before You Compute

Download or read book Numerical Methods Think before You Compute written by E. J. Hinch and published by Cambridge University Press. This book was released on 2020-04-30 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide to computational fluid mechanics introduces beginning graduate students to the subject's standard methods and common pitfalls.

Book Handbook of Mathematical Geodesy

Download or read book Handbook of Mathematical Geodesy written by Willi Freeden and published by Birkhäuser. This book was released on 2018-06-11 with total page 938 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.

Book Performance Analysis and Tuning for General Purpose Graphics Processing Units  GPGPU

Download or read book Performance Analysis and Tuning for General Purpose Graphics Processing Units GPGPU written by Hyesoon Kim and published by Morgan & Claypool Publishers. This book was released on 2012 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: General-purpose graphics processing units (GPGPU) have emerged as an important class of shared memory parallel processing architectures, with widespread deployment in every computer class from high-end supercomputers to embedded mobile platforms. Relative to more traditional multicore systems of today, GPGPUs have distinctly higher degrees of hardware multithreading (hundreds of hardware thread contexts vs. tens), a return to wide vector units (several tens vs. 1-10), memory architectures that deliver higher peak memory bandwidth (hundreds of gigabytes per second vs. tens), and smaller caches/scratchpad memories (less than 1 megabyte vs. 1-10 megabytes). In this book, we provide a high-level overview of current GPGPU architectures and programming models. We review the principles that are used in previous shared memory parallel platforms, focusing on recent results in both the theory and practice of parallel algorithms, and suggest a connection to GPGPU platforms. We aim to provide hints to architects about understanding algorithm aspect to GPGPU. We also provide detailed performance analysis and guide optimizations from high-level algorithms to low-level instruction level optimizations. As a case study, we use n-body particle simulations known as the fast multipole method (FMM) as an example. We also briefly survey the state-of-the-art in GPU performance analysis tools and techniques.