EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fabrication and Application of Polymer Based Microfluidic Devices

Download or read book Fabrication and Application of Polymer Based Microfluidic Devices written by Myra T. Koesdjojo and published by . This book was released on 2009 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of reducing laboratory operations in scale such that they fit on a microfluidic chip has been met with great enthusiasm. Lab-on-a-chip devices promise to be cost effective to operate due to reduced reagent consumption, have the potential to offer shorter analysis times due to their short path lengths, and may be useful in biological applications in that they are inherently compact and inexpensive to build, thus they may be disposable. In this work, a series of fabrication techniques for the production of polymer-based microfluidic devices are explored. In the first component of this research effort an aluminum mold was fabricated using CNC machining to create the desired microchannel design, followed by a two-stage embossing process, involving two polymer substrates with different glass transition temperatures (Tg), polyetherimide (PEI; Tg~216oC) and poly(methyl methacrylate) (PMMA; Tg~105oC). Successful feature transfer from aluminum mold to PMMA substrates was achieved reproducibly employing this method. With this approach, the expensive process of producing the aluminum master need be performed only once. Electrophoretic separations of fluorescent dyes, rhodamine B and fluorescein were performed on the PMMA microchips, with peak efficiencies of 55500 and 66300 theoretical plates/meter, respectively. The next stage of work explored a new bonding method by solvent welding using ice as sacrificial layer to prevent channel deformation. Water is one of the most compatible sacrificial media; it is readily available, non toxic, has a low evaporation rate, a high freezing point relative to the bonding solvent, and a low melting point which makes it easier to flush out after sealing, as compared to using other sacrificial media (paraffin wax or low-melting temperature alloys). The bonded PMMA microchips could withstand an internal pressure of > 2000 psi, more than 17 times stronger than the thermally bonded chips. In the final stage of work a new bonding technique was developed that readily produces complete microfluidic chips, without the need of a sacrificial layer to form complete multilayer microfluidic devices. Also developed was the use of an SU-8 master in the two-stage embossing process to create microchannels. This approach is faster, simpler and less costly than CNC machining. The fabrication technique was utilized to build a microfluidic liquid chromatography (LC) system that was shown to generate high separation efficiencies of 10,000- 45,000 plates/m. In addition, a passive micromixer containing high-density microfeatures was fabricated to perform a glycine assay using O-phthaldialdehyde. With glycine concentrations ranging from 0.0 to 2.6 [mu]M, a linear calibration plot (R2 = 0.9982) was obtained with a detection limit of 0.032 [mu]M.

Book Biomedical Applications of Microfluidic Devices

Download or read book Biomedical Applications of Microfluidic Devices written by Michael R. Hamblin and published by Academic Press. This book was released on 2020-11-12 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Applications of Microfluidic Devices introduces the subject of microfluidics and covers the basic principles of design and synthesis of actual microchannels. The book then explores how the devices are coupled to signal read-outs and calibrated, including applications of microfluidics in areas such as tissue engineering, organ-on-a-chip devices, pathogen identification, and drug/gene delivery. This book covers high-impact fields (microarrays, organ-on-a-chip, pathogen detection, cancer research, drug delivery systems, gene delivery, and tissue engineering) and shows how microfluidics is playing a key role in these areas, which are big drivers in biomedical engineering research. This book addresses the fundamental concepts and fabrication methods of microfluidic systems for those who want to start working in the area or who want to learn about the latest advances being made. The subjects covered are also an asset to companies working in this field that need to understand the current state-of-the-art. The book is ideal for courses on microfluidics, biosensors, drug targeting, and BioMEMs, and as a reference for PhD students. The book covers the emerging and most promising areas of biomedical applications of microfluidic devices in a single place and offers a vision of the future. - Covers basic principles and design of microfluidics devices - Explores biomedical applications to areas such as tissue engineering, organ-on-a-chip, pathogen identification, and drug and gene delivery - Includes chemical applications in organic and inorganic chemistry - Serves as an ideal text for courses on microfluidics, biosensors, drug targeting, and BioMEMs, as well as a reference for PhD students

Book Microfluidics

    Book Details:
  • Author : Yu Song
  • Publisher : John Wiley & Sons
  • Release : 2018-05-07
  • ISBN : 3527341064
  • Pages : 576 pages

Download or read book Microfluidics written by Yu Song and published by John Wiley & Sons. This book was released on 2018-05-07 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.

Book 3D Printed Microfluidic Devices

Download or read book 3D Printed Microfluidic Devices written by Savas Tasoglu and published by MDPI. This book was released on 2019-01-10 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "3D Printed Microfluidic Devices" that was published in Micromachines

Book Micromixers

    Book Details:
  • Author : Nam-Trung Nguyen
  • Publisher : William Andrew
  • Release : 2011-09-17
  • ISBN : 1437735215
  • Pages : 369 pages

Download or read book Micromixers written by Nam-Trung Nguyen and published by William Andrew. This book was released on 2011-09-17 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to mix minute quantities of fluids is critical in a range of recent and emerging techniques in engineering, chemistry and life sciences, with applications as diverse as inkjet printing, pharmaceutical manufacturing, specialty and hazardous chemical manufacturing, DNA analysis and disease diagnosis.The multidisciplinary nature of this field – intersecting engineering, physics, chemistry, biology, microtechnology and biotechnology – means that the community of engineers and scientists now engaged in developing microfluidic devices has entered the field from a variety of different backgrounds.Micromixers is uniquely comprehensive, in that it deals not only with the problems that are directly related to fluidics as a discipline (aspects such as mass transport, molecular diffusion, electrokinetic phenomena, flow instabilities, etc.) but also with the practical issues of fabricating micomixers and building them into microsystems and lab-on-chip assemblies.With practical applications to the design of systems vital in modern communications, medicine and industry this book has already established itself as a key reference in an emerging and important field.The 2e includes coverage of a broader range of fabrication techniques, additional examples of fully realized devices for each type of micromixer and a substantially extended section on industrial applications, including recent and emerging applications. - Introduces the design and applications of micromixers for a broad audience across chemical engineering, electronics and the life sciences, and applications as diverse as lab-on-a-chip, ink jet printing, pharmaceutical manufacturing and DNA analysis - Helps engineers and scientists to unlock the potential of micromixers by explaining both the scientific (microfluidics) aspects and the engineering involved in building and using successful microscale systems and devices with micromixers - The author's applied approach combines experience-based discussion of the challenges and pitfalls of using micromixers, with proposals for how to overcome them

Book Microfluidics and Microfabrication

Download or read book Microfluidics and Microfabrication written by Suman Chakraborty and published by Springer Science & Business Media. This book was released on 2009-12-15 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics and Microfabrication discusses the interconnect between microfluidics, microfabrication and the life sciences. Specifically, this includes fundamental aspects of fluid mechanics in micro-scale and nano-scale confinements and microfabrication. Material is also presented discussing micro-textured engineered surfaces, high-performance AFM probe-based, micro-grooving processes, fabrication with metals and polymers in bio-micromanipulation and microfluidic applications. Editor Suman Chakraborty brings together leading minds in both fields who also: Cover the fundamentals of microfluidics in a manner accessible to multi-disciplinary researchers, with a balance of mathematical details and physical principles Discuss the explicit interconnection between microfluiodics and microfabrication from an application perspective Detail the amalgamation of microfluidics with logic circuits and applications in micro-electronics Microfluidics and Microfabrication is an ideal book for researchers, engineers and senior-level graduate students interested in learning more about the two fields.

Book Microfluidic Technologies for Human Health

Download or read book Microfluidic Technologies for Human Health written by Utkan Demirci and published by World Scientific. This book was released on 2012 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ch. 1. A microscale bioinspired cochlear-like sensor / Robert D. White, Robert Littrell, and Karl Grosh -- ch. 2. Systematic evaluation of the efficiencies of proteins and chemicals in pharmaceutical applications / Morgan Hamon and Jong Wook Hong -- ch. 3. Microfluidic glucose sensors / Jithesh V. Veetil [und weitere] -- ch. 4. Applications of microfabrication and microfluidic techniques in mesenchymal stem cell research / Abhijit Majumder [und weitere] -- ch. 5. Patient-specific modeling of low-density lipoprotein transport in coronary arteries / Ufuk Olgac -- ch. 6. Point-of-care microdevices for global health diagnostics of infectious diseases / Sau Yin Chin [und weitere] -- ch. 7. Integrated microfluidic sample preparation for chip-based molecular diagnostics / Jane Y. Zhang [und weitere] -- ch. 8. Microfluidic devices for cellular proteomic studies / Yihong Zhan and Chang Lu -- ch. 9. Microfluidics for neuroscience: novel tools and future implications / Vivian M. Hernandez and P. Hande Ozdinler -- ch. 10. Microfluidics: on-chip platforms as in vitro disease models / Shan Gao, Erkin Seker, and Martin L. Yarmush -- ch. 11. Application of microfluidics in stem cell and tissue engineering / Sasha H. Bakhru, Christopher Highley, and Stefan Zappe -- ch. 12. Microfluidic "on-the-fly" fabrication of microstructures for biomedical applications / Edward Kang, Sau Fung Wong, and Sang-Hoon Lee -- ch. 13. Microfluidics as a promising tool toward distributed viral detection / Elodie Sollier and Dino Di Carlo -- ch. 14. Electrophoresis and dielectrophoresis for lab-on-a-chip (LOC) analyses / Yagmur Demircan, Gurkan Yilmaz, and Haluk Kulah -- ch. 15. Ultrasonic embossing of carbon nanotubes for the fabrication of polymer microfluidic chips for DNA sample purification / Puttachat Khuntontong, Min Gong, and Zhiping Wang -- ch. 16. Ferrofluidics / A. Rezzan Kose and Hur Koser -- ch. 17. Antibody-based blood bioparticle capture and separation using microfluidics for global health / ZhengYuan Luo [und weitere] -- ch. 18. Applications of quantum dots for fluorescence imaging in biomedical research / ShuQi Wang [und weitere]

Book Microfluidics for Advanced Functional Polymeric Materials

Download or read book Microfluidics for Advanced Functional Polymeric Materials written by Liang-Yin Chu and published by John Wiley & Sons. This book was released on 2017-03-13 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and systematic treatment of our current understanding of the microfluidic technique and its advantages in the controllable fabrication of advanced functional polymeric materials. Introducing and summarizing recent advances and achievements in the field, the authors cover the design and fabrication of microfluidic devices, the fundamentals and strategies for controllable microfluidic generation of multiphase liquid systems, and the use of these liquid systems with an elaborate combination of their structures and compositions for generating novel polymer materials, such as microcapsules, microfibers, valves, and membranes. Clear diagrams and illustrations throughout the text make the relevant theory and technologies more readily accessible. The result is a specialist reference for materials scientists, organic, polymer and physical chemists, and chemical engineers.

Book Microfluidic Lab on a Chip for Chemical and Biological Analysis and Discovery

Download or read book Microfluidic Lab on a Chip for Chemical and Biological Analysis and Discovery written by Paul C.H. Li and published by CRC Press. This book was released on 2005-11-01 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: The microfluidic lab-on-a-chip allows scientists to conduct chemical and biochemical analysis in a miniaturized format so small that properties and effects are successfully enhanced, and processes seamlessly integrated. This microscale advantage translates into greater sensitivity, more accurate results, and better information. Microfluidic

Book A Highly integrated Polymer based Microfluidic Device for Disposable Applications

Download or read book A Highly integrated Polymer based Microfluidic Device for Disposable Applications written by Emil John Geiger and published by . This book was released on 2008 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Laser Assisted Fabrication of Polymer Based Microfluidic Devices

Download or read book Laser Assisted Fabrication of Polymer Based Microfluidic Devices written by Soni Chandrasekar and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Control of Fluid Flow

Download or read book Control of Fluid Flow written by Petros Koumoutsakos and published by Springer Science & Business Media. This book was released on 2006-05-31 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents the state of the art of theory and applications in fluid flow control, assembling contributions by leading experts in the field. The book covers a wide range of recent topics including vortex based control algorithms, incompressible turbulent boundary layers, aerodynamic flow control, control of mixing and reactive flow processes or nonlinear modeling and control of combustion dynamics.

Book Microfluidic Fabrication of Polymer Based Microparticles for Biomedical Applications

Download or read book Microfluidic Fabrication of Polymer Based Microparticles for Biomedical Applications written by Tiantian Kong and published by Open Dissertation Press. This book was released on 2017-01-26 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Microfluidic Fabrication of Polymer-based Microparticles for Biomedical Applications" by Tiantian, Kong, 孔湉湉, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Delivery vehicles that can encapsulate and release active ingredients of pre-determined volumes at the target site on-demand present a challenge in biomedical field. Due to their tunable physiochemical properties and degradation rate, polymeric particles are one of the most extensively employed delivery vehicles. Generally they are fabricated from emulsion templates. Conventional bulk emulsification technique provides little control over the characteristics of droplets generated. Thus the properties of the subsequent particles cannot be controlled. The advance of droplet microfluidics enables the generation and manipulation of designer single, double or higher-order emulsion droplets with customizable structure. These droplets are powerful and versatile templates for fabricating polymeric delivery vehicles with pre-determined properties. Due to the monodispersity of droplet templates by microfluidics, the relationship between size, size distribution, shape, architecture, elastic responses and release kinetics can be systematically studied. These understandings are of key importance for the design and fabrication of the next generation polymeric delivery vehicles with custom-made functions for specific applications. In the present work, we engineer the droplet templates generated from microfluidics to fabricate designer polymeric microparticles as delivery vehicles. We investigate and obtain the relationship between the particle size, size distribution, structure of microparticles and their release kinetics. Moreover, we also identify an innovative route to tune the particle shape that enables the investigation of the relationship between particle shape and release kinetics. We take advantage of the dewetting phenomena driving by interfacial tensions of different liquid phases to vary the droplet shape. We find that the phase-separation-induced shape variation of polymeric composite particles can be engineered by manipulating the kinetic barriers during droplet shape evolution. To predict the performance of our advanced polymer particles in practical applications, for instance, in narrow blood vessels in vivo, we also develop a novel capillary micromechanics technique to characterize the linear and non-linear elastic response of our polymer particles on single particle level. The knowledge of the mechanical properties enables the prediction as well as the design of the mechanical aspects of polymer particles in different applications. The ability to control and design the physical, chemical, mechanical properties of the delivery vehicles, and the understanding between these properties and the biological functionalities of delivery vehicles, such as the release kinetics, lead towards tailor-designed delivery vehicles with finely-designed functionalities for various biomedical applications. Our proposed electro-microfluidic platform potentially enables generation of submicron droplet templates with a narrow size distribution and nanoscaled delivery vehicles with well-controlled properties, leading to a next generation of intracellular delivery vehicles. Microfluidic-based technique has the potential to be scaled up by parallel operation. Therefore, we are well-equipped for the massive production of custom-made droplet templates of both micron-size and nanosized, and we can design the physiochemical properties and biological functionalities of the delivery vehicle

Book Microfluidic Devices for Biomedical Applications

Download or read book Microfluidic Devices for Biomedical Applications written by Xiujun (James) Li and published by Woodhead Publishing. This book was released on 2021-08-05 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidic Devices for Biomedical Applications, Second Edition provides updated coverage on the fundamentals of microfluidics, while also exploring a wide range of medical applications. Chapters review materials and methods, microfluidic actuation mechanisms, recent research on droplet microfluidics, applications in drug discovery and controlled-delivery, including micro needles, consider applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds, and cover the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. This book is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries. - Discusses the fundamentals of microfluidics or lab-on-a-chip (LOC) and explores a wide range of medical applications - Considers materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies - Details applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and its role in developing tissue scaffolds, and stem cell engineering

Book Novel Polymer based Microfluidic Devices

Download or read book Novel Polymer based Microfluidic Devices written by Chong Hu and published by . This book was released on 2018 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the first part, we proposed an "inside-out" fabrication strategy using a copper scaffold as the sacrificial template to create freestanding 3D microvascular structures containing branched tubular networks with alginate hydrogel. The microvascular structures produced with this method are strong enough to allow handling, biocompatible for cell culture, appropriately porous to allow diffusion of small molecules, while sufficiently dense to prevent blocking of channels when embedded in various types of gels. In addition, other materials and biomolecules could be pre-loaded in our hydrogel tubular networks by mixing them with alginate solution, and the thickness of tubule wall is tunable. Compared to other potential strategies of fabricating free-standing gel channel networks, our method is parallel processing using an industrially mass-producible template, making our method rapid, low-cost and scalable. We demonstrated cell culture in a nutrition gradient based on a microfluidic diffusion device made of agar, a hydrogel traditionally hard to microfabricate, by embedding the synthesized tubules into the agar gel. In this way, the freestanding hydrogel vascular network we produced is a universal functional unit that can be integrated with other gel-based devices to build up the supporting matrix for 3D cell culture outside the hydrogel vascular structure; allowing great convenience and flexibility 3D culture. The method is readily implementable to have broad applications in biomedicine and biology, such as vascular tissue regeneration, drug discovery, and delivery system in 3D culture.