EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fabrication of Two dimensional and Three dimensional Photonic Crystal Devices for Applications in Chip scale Optical Interconnects

Download or read book Fabrication of Two dimensional and Three dimensional Photonic Crystal Devices for Applications in Chip scale Optical Interconnects written by and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: To date, the realization of chip-scale optical interconnects has been inhibited by the lack of a device technology that can provide optical functionality at a scale commensurate with integrated circuits. To overcome this limitation, I propose the realization of an "optical superhighway" as an alternative interconnect paradigm for next-generation integrated circuits using semiconductor-based photonic-crystal (PhC) devices. PhCs have the potential to be the elementary building blocks of the next generation of opto-electronic devices and integrated circuits. This potential has invigorated global research interest in hybrid optical-electrical interconnects at the chip scale. In this thesis, I will present the development of such Nano-Photonic Crystal (PhC) interconnects using conventional CMOS fabrication technology, thereby enabling photonic functionality on the VLSI scale. Accordingly, I will discuss the fabrication of high fill-factor planar PhC devices on silicon-on-insulator substrates, using both capacitively coupled and inductively coupled plasma etching. Functional, sub-100-nm, high-aspect-ratio PhC devices will be presented, along with the technical challenges encountered in their realization. Also, a robust etch-process toolbox has been developed that, in addition to realizing chip-scale optical interconnects, also paves the way for applications in other technology niches like MEMS, terahertz devices, nanophotonics and microfluidics, to be realized in a single silicon platform, thus enabling systems-on-a-chip. In-plane optical routing in ultra-thin silicon-on-sapphire is also explored as part of this investigation. In addition, I will discuss the development of a sub-surface silicon optical bus (S3B), a buried silicon optical interconnect technology. The approach relies on engineering the dispersion properties of three-dimensional (3D) photonic crystals embedded in silicon to control light propagation. In particular, a novel method of fabricating buried 3D photonic-crystal structures using conventional planar silicon micromachining will be presented. This method utilizes a single planar etch mask and time-multiplexed etch process along with sidewall oxidation to create an array of spherical voids with three-dimensional symmetry. Preliminary results will be presented to support the feasibility of realizing chip-scale optical interconnects using the proposed approach. The results of this research will not only help realize a new generation of optical integrated circuits, but also provide a solution to the global interconnect delay anticipated in next-generation of high-end integrated circuits. These PhC devices could very well provide the building blocks for the integrated circuits of the future.

Book Novel Advancements in Nanofabrication for Photonic Crystal Applications

Download or read book Novel Advancements in Nanofabrication for Photonic Crystal Applications written by Lin Lee Cheong and published by . This book was released on 2013 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: The progress of large-area 2D- and 3D-photonic crystals (PCs) at optical and near infra-red frequencies has been limited by fabrication challenges. Periodic nanostructures must be patterned in high-index and crystalline material such as silicon over large areas (mm2 to cm2) with reasonable throughput. These patterns also must be placed coherently over the entire area, and contain controlled defects. No single conventional nanoscale patterning technique is able to fulfil all of these requirements simultaneously. Pattern placement and throughput challenges for planar lithography can be addressed by combining spatial-phase-locked electron-beam lithography (SPLEBL) with lowenergy (sub-2keV) electrons. SPLEBL obtains feedback on the electron-beam position using a reference grid placed on top of the resist. Combining low-energy lithography with SPLEBL places strict requirements on the SPLEBL reference grid. A systematic investigation on a suitable grid material is carried out, and a self-assembled monolayers (SAMs) based grid is fabricated and characterized. Another method of fabricating large area planar PCs is through interference lithography (IL). The key challenge is the inability of IL to pattern defects or non-periodic structures and thermal scanning probe lithography (TSPL) is proposed as a complementary technique to IL. Integrating TSPL with IL requires capability to transfer TSPL-fabricated patterns into underlying material and is challenging due to the thermal-mechanical nature of TSPL. A robust pattern transfer process is designed and the effects of the lithography and etch processes on resolution and line-edge roughness is studied. The membrane-stacking approach, where large-area membranes are fabricated in parallel and then stacked to form a 3D-PC, was proposed as a more efficient method of fabricating 3D-photonic crystals (3D-PCs) compared to conventional fabrication methods. There exists a need to develop techniques capable of fabricating, transferring and assembling these membranes. In this thesis, a membrane-on-carrier (MOC) strategy based on the membrane-stacking approach is proposed. Membranes are fabricated and floated on liquid, and then transferred onto a temporary rigid carrier. The key challenge is in separating the membrane from the rigid carrier onto a receiving substrate. A dissolvable separation layer is introduced between the membrane and carrier, and two membranes are stacked on top of another as proof-of-concept. Finally, azimuthal alignment is incorporated into the process.

Book Photonic Crystals and Light Localization in the 21st Century

Download or read book Photonic Crystals and Light Localization in the 21st Century written by C.M. Soukoulis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains papers presented at the NATO Advanced Study Institute (ASI) Photonic Crystals and Light Localization held at the Creta Maris Hotel in Limin Hersonissou, Crete, June 18-30, 2000. Photonic crystals offer unique ways to tailor light and the propagation of electromagnetic waves (EM). In analogy to electrons in a crystal, EM waves propagating in a structure with a periodically modulated dielectric constant are organized into photonic bands, separated by gaps where propagating states are forbidden. There have been proposals for novel applications ofthese photonic band gap (PBG) crystals, with operating frequencies ranging from microwave to the optical regime, that include zero threshold lasers, low-loss resonators and cavities, and efficient microwave antennas. Spontaneous emission, suppressed for photons in the photonic band gap, offers novel approaches to manipulate the EM field and create high-efficiency light-emitting structures. Innovative ways to manipulate light can have a profound iofluence on science and technology.

Book Silicon Photonics

Download or read book Silicon Photonics written by Graham T. Reed and published by John Wiley & Sons. This book was released on 2008-05-23 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon photonics is currently a very active and progressive area of research, as silicon optical circuits have emerged as the replacement technology for copper-based circuits in communication and broadband networks. The demand for ever improving communications and computing performance continues, and this in turn means that photonic circuits are finding ever increasing application areas. This text provides an important and timely overview of the ‘hot topics’ in the field, covering the various aspects of the technology that form the research area of silicon photonics. With contributions from some of the world’s leading researchers in silicon photonics, this book collates the latest advances in the technology. Silicon Photonics: the State of the Art opens with a highly informative foreword, and continues to feature: the integrated photonic circuit; silicon photonic waveguides; photonic bandgap waveguides; mechanisms for optical modulation in silicon; silicon based light sources; optical detection technologies for silicon photonics; passive silicon photonic devices; photonic and electronic integration approaches; applications in communications and sensors. Silicon Photonics: the State of the Art covers the essential elements of the entire field that is silicon photonics and is therefore an invaluable text for photonics engineers and professionals working in the fields of optical networks, optical communications, and semiconductor electronics. It is also an informative reference for graduate students studying for PhD in fibre optics, integrated optics, optical networking, microelectronics, or telecommunications.

Book Design and Fabrication of Robust Photonic Crystals

Download or read book Design and Fabrication of Robust Photonic Crystals written by and published by . This book was released on 2009 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: The photonic crystal structure, that is robust for the structural fluctuation caused by the inevitable incompleteness of the fabrication process, will be studied. The final goals include (1) optimization of the deeply etched 1-D (one-dimension), 2-D, and 3-D photonic crystal structures, that are robust for the inevitable fabrication incompleteness, and (2) establishment of the generalized rule of the robustness for all kinds of photonic crystals, which is the key technology for realizing actual optical devices. The total research period is assumed to be three years.

Book Photonic Crystals

Download or read book Photonic Crystals written by Kuon Inoue and published by Springer. This book was released on 2013-11-11 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonic crystals are a very hot topic in photonics. The basics, fabrication, application and new theoretical developments in the field of photonic crystals are presented in a comprehensive way, together with a survey of the advanced state-of-the-art report.

Book Soft Lithographical Fabrication of Three dimensional Photonic Crystals in the Optical Regime

Download or read book Soft Lithographical Fabrication of Three dimensional Photonic Crystals in the Optical Regime written by Jae-Hwang Lee and published by . This book was released on 2006 with total page 5265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation describes several projects to realize low-cost and high-quality three-dimensional (3D) microfabrication using non-photolithographic techniques for layer-by-layer photonic crystals. Low-cost, efficient 3D microfabrication is a demanding technique not only for 3D photonic crystals but also for all other scientific areas, since it may create new functionalities beyond the limit of planar structures. However, a novel 3D microfabrication technique for photonic crystals implies the development of a complete set of sub-techniques for basic layer-by-layer stacking, inter-layer alignment, and material conversion. One of the conventional soft lithographic techniques, called microtransfer molding ({mu}TM), was developed by the Whitesides group in 1996. Although {mu}TM technique potentially has a number of advantages to overcome the limit of conventional photolithographic techniques in building up 3D microstructures, it has not been studied intensively after its demonstration. This is mainly because of technical challenges in the nature of layer-by-layer fabrication, such as the demand of very high yield in fabrication. After two years of study on conventional {mu}TM, We have developed an advanced microtransfer molding technique, called two-polymer microtransfer molding (2P-{mu}TM) that shows an extremely high yield in layer-by-layer microfabrication sufficient to produce highly layered microstructures. The use of two different photo-curable prepolymers, a filler and an adhesive, allows for fabrication of layered microstructures without thin films between layers. The capabilities of 2P-{mu}TM are demonstrated by the fabrication of a wide-area 12-layer microstructure with high structural fidelity. Second, we also had to develop an alignment technique. We studied the 1st-order diffracted moire fringes of transparent multilayered structures comprised of irregularly deformed periodic patterns. By a comparison study of the diffracted moire fringe pattern and detailed microscopy of the structure, we show that the diffracted moire fringe can be used as a nondestructive tool to analyze the alignment of multilayered structures. We demonstrate the alignment method for the case of layer-by-layer microstructures using soft lithography. The alignment method yields high contrast of fringes even when the materials being aligned have very weak contrasts. The imaging method of diffracted moire fringes is a versatile visual tool for the microfabrication of transparent deformable microstructures in layer-by-layer fashion. Third, we developed several methods to convert a polymer template to dielectric or metallic structures, for instance, metallic infiltration using electrodeposition, metallic coating using sputter deposition, dielectric infiltration using titania nano-slurry, and dielectric coating using atomic layer deposition of Titania. By several different developed techniques, high quality photonic crystals have been successfully fabricated; however, I will focus on a line of techniques to reach metallic photonic crystals in this dissertation since they are completely characterized at this moment. In addition to the attempts for photonic crystal fabrication, our non-photolithographic technique is applied for other photonic applications such as small optical waveguides whose diameter is comparable to the wavelength of guided light. Although, as guiding medium, polymers have tremendous potential because of their enormous variation in optical, chemical and mechanical properties, their application for optical waveguides is limited in conventional photolithography. By 2P-{mu}TM, we achieve low cost, high yield, high fidelity, and tailorable fabrication of small waveguides. Embedded semiconductor quantum-dots and grating couplers are used for efficient internal and external light source, respectively.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2006 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fabrication and Optical Characterization of Macroporous Silicon Photonic Crystals

Download or read book Fabrication and Optical Characterization of Macroporous Silicon Photonic Crystals written by Matteo Balbo and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The computer revolution experienced in recent years has been possible thanks to semiconductor materials, such as silicon, germanium and gallium arsenide. The success of the silicon-based microelectronics is due to the ability to integrate multiple elements on the same chip such as processors, memories, and interfaces. However, the increasing miniaturization and the realization of faster devices have revealed the difficulty to overcome the intrinsic limits of these materials. For example, devices have to dissipate the heat produced by the enormous power density involved, without damaging themselves , and the lengths can not be reduced indefinitely if one wants to ensure the synchronization of the signals. All these limitations have led to research into technologies that overcome the physical limits of the silicon-based microelectronics. From the outset, the most promising approach has been photonics. In photonics, the so-called photonic crystals have aroused a widespread interest. These innovative materials are fundamental for the construction of optical circuits, i.e. circuits in which the transmission of information is carried out by photons instead of electrons. These materials can be considered as the optical analogue of semiconductors: in semiconductors the presence of a periodic potential, causes the formation of electronic energy bands separated by forbidden intervals called energy gaps, where there are not electronic states. In a photonic crystal, a periodic distribution of dielectrics with different refractive index causes the formation of a so-called photonic energy gap: photons with energy values internal to the forbidden gap can not pass through the crystal and will be refected or conffined inside of it. The goal of this thesis is the fabrication of photonic crystals based on macroporous silicon technology and their optical characterization using infrared spectroscopy in order to reveal the presence of photonic band gaps. All the fabrication and characterization processes were carried out in the clean room and laboratories of the "Universitat Politècnica de Catalunya (UPC)" , thanks to the collaboration of the "Grup de Recerca en Micro i Nanotecnologies". The thesis is structured as follows: in Chapter 1 are presented the theoretical aspects related to photonic crystals, as well as the mechanism of formation of macropores in n-type silicon wafers by electrochemical etching. In chapter 2 is explained the fabrication process of the macroporous silicon photonic crystals detailing all the process steps to which the silicon wafer is subjected to obtain the desired structures. Photographs taken by a scanning electron microscope (SEM) are also reported to verify the correspondence between the obtained structures and those drawn in the design phase. In Chapter 3, using the MIT photonic band gap (MPB) software package, developed by the Massachusetts Institute of Technology (MIT) , the band diagrams of different photonic structures are computed to study how certain design parameters could affect the position and width of the photonic band gaps. Chapter 4 presents the results of the refection and thermal emission measurements, carried out by Fourier Transform Infrared spectroscopy (FT-IR) to determine the optical response and to verify the presence of photonic band gaps in the fabricated structures. Finally, in Chapter 5 are given the conclusions of this thesis.

Book Manufacturing Techniques for Microfabrication and Nanotechnology

Download or read book Manufacturing Techniques for Microfabrication and Nanotechnology written by Marc J. Madou and published by CRC Press. This book was released on 2011-06-13 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for science and engineering students, this text focuses on emerging trends in processes for fabricating MEMS and NEMS devices. The book reviews different forms of lithography, subtractive material removal processes, and additive technologies. Both top-down and bottom-up fabrication processes are exhaustively covered and the merits of the different approaches are compared. Students can use this color volume as a guide to help establish the appropriate fabrication technique for any type of micro- or nano-machine.

Book Silicon Photonics

    Book Details:
  • Author : Lorenzo Pavesi
  • Publisher : Springer Science & Business Media
  • Release : 2004-03-04
  • ISBN : 9783540210221
  • Pages : 424 pages

Download or read book Silicon Photonics written by Lorenzo Pavesi and published by Springer Science & Business Media. This book was released on 2004-03-04 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a fascinating picture of the state-of-the-art in silicon photonics and a perspective on what can be expected in the near future. It is composed of a selected number of reviews authored by world leaders in the field and is written from both academic and industrial viewpoints. An in-depth discussion of the route towards fully integrated silicon photonics is presented. This book will be useful not only to physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in the fields of microphotonics and optoelectronics.

Book Wafer Bonding

    Book Details:
  • Author : Marin Alexe
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 3662108275
  • Pages : 510 pages

Download or read book Wafer Bonding written by Marin Alexe and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2626 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Microfabrication

Download or read book Introduction to Microfabrication written by Sami Franssila and published by John Wiley & Sons. This book was released on 2010-10-29 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible text is now fully revised and updated, providing an overview of fabrication technologies and materials needed to realize modern microdevices. It demonstrates how common microfabrication principles can be applied in different applications, to create devices ranging from nanometer probe tips to meter scale solar cells, and a host of microelectronic, mechanical, optical and fluidic devices in between. Latest developments in wafer engineering, patterning, thin films, surface preparation and bonding are covered. This second edition includes: expanded sections on MEMS and microfluidics related fabrication issues new chapters on polymer and glass microprocessing, as well as serial processing techniques 200 completely new and 200 modified figures more coverage of imprinting techniques, process integration and economics of microfabrication 300 homework exercises including conceptual thinking assignments, order of magnitude estimates, standard calculations, and device design and process analysis problems solutions to homework problems on the complementary website, as well as PDF slides of the figures and tables within the book With clear sections separating basic principles from more advanced material, this is a valuable textbook for senior undergraduate and beginning graduate students wanting to understand the fundamentals of microfabrication. The book also serves as a handy desk reference for practicing electrical engineers, materials scientists, chemists and physicists alike. www.wiley.com/go/Franssila_Micro2e

Book Fundamentals of Microfabrication and Nanotechnology  Three Volume Set

Download or read book Fundamentals of Microfabrication and Nanotechnology Three Volume Set written by Marc J. Madou and published by CRC Press. This book was released on 2018-12-14 with total page 1992 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, Fundamentals of Microfabrication and Nanotechnology continues to provide the most complete MEMS coverage available. Thoroughly revised and updated the new edition of this perennial bestseller has been expanded to three volumes, reflecting the substantial growth of this field. It includes a wealth of theoretical and practical information on nanotechnology and NEMS and offers background and comprehensive information on materials, processes, and manufacturing options. The first volume offers a rigorous theoretical treatment of micro- and nanosciences, and includes sections on solid-state physics, quantum mechanics, crystallography, and fluidics. The second volume presents a very large set of manufacturing techniques for micro- and nanofabrication and covers different forms of lithography, material removal processes, and additive technologies. The third volume focuses on manufacturing techniques and applications of Bio-MEMS and Bio-NEMS. Illustrated in color throughout, this seminal work is a cogent instructional text, providing classroom and self-learners with worked-out examples and end-of-chapter problems. The author characterizes and defines major research areas and illustrates them with examples pulled from the most recent literature and from his own work.