EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fabrication and Characterization of Nanostructures from Self assembled Block Copolymers

Download or read book Fabrication and Characterization of Nanostructures from Self assembled Block Copolymers written by Joy Cheng and published by . This book was released on 2003 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale magnetic dot arrays have attracted considerable interest, both for fundamental studies of micromagnetism and for possible applications in high-density magnetic data storage. Self-assembled block copolymers provide an alternative nanolithography technique to fabricate large-area nanomagnet arrays. Block copolymer thin films that micro-phase separate into periodic domains can be used as templates to define arrays of close-packed nanostructure, using a series of etching steps. Using polystyrene-polyferrocenyldimethyl-silane (PS-PFS), large-area polymer dots, silica dots and magnetic dots with periods of 56 nm were made using a series of plasma etching steps. Magnetometry techniques are used to characterize the bulk magnetic behavior of the dot arrays of Co, NiFe and pseudo spin valve structures. These dot arrays show strong magnetostatic interaction between the dots and within the dots. The self-assembly process is simple and low cost, however, the block copolymers typically have uncontrolled defects and lack long-range order. A topographically patterned substrate is used to guide the phase-separation in a subsequently deposited block copolymer film. The lateral dimensions of the patterns in the substrates, and interfacial interactions, are key factors in the ordering mechanism. Well-ordered block copolymer structures can be achieved under proper confinement conditions. In addition, the position of the polymer microdomains and defects in the array such as dislocations can be purposefully controlled by the design of the topographical guiding features. Combining topographic confinement with block copolymer lithographic methods will enable large-area ordered functional dot arrays to be made for various applications.

Book Directed Self assembly of Block Co polymers for Nano manufacturing

Download or read book Directed Self assembly of Block Co polymers for Nano manufacturing written by Roel Gronheid and published by Woodhead Publishing. This book was released on 2015-07-17 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields

Book Block Copolymers in Nanoscience

Download or read book Block Copolymers in Nanoscience written by Massimo Lazzari and published by John Wiley & Sons. This book was released on 2007-06-27 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first book to take a detailed look at one of the key focal points where nanotechnology and polymers meet provides both an introductory view for beginners as well as in-depth knowledge for specialists in the various research areas involved. It investigates all types of application for block copolymers: as tools for fabricating other nanomaterials, as structural components in hybrid materials and nanocomposites, and as functional materials. The multidisciplinary approach covers all stages from chemical synthesis and characterization, presenting applications from physics and chemistry to biology and medicine, such as micro- and nanolithography, membranes, optical labeling, drug delivery, as well as sensory and analytical uses.

Book Characterization of Nano arrays Fabricated Via Self assembly of Block Copolymers

Download or read book Characterization of Nano arrays Fabricated Via Self assembly of Block Copolymers written by Marianna Shnayderman and published by . This book was released on 2004 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research focused on methods for regulating arrangement of self-assembled block copolymers by understanding fabrication conditions and their effects on the polymers on flat and patterned substrates. Block copolymer self-assembly is a simple and low cost process for creating lithographic masks with features under 100nm in dimension. These patterns can be transferred to more permanent materials for applications in electronics, magnetic devices, as well as sensors and filters. Polystyrene-poly(ferrocenyldimethylsilane) block copolymer thin films were characterized in terms of their spin curves, PSF spherical domain cross sectional area distributions, and correlation distances. Optimal fabrication conditions were selected from studying polymer behavior on flat substrates and then used for templated substrate studies. Substrates that were templated with grooves produced quantized numbers of rows of spherical domains ranging from 4 to 7. Behavior in these grooves was characterized in terms of groove width constraints, cross sectional domain area distributions, and row ordering. For all templated arrays, the lengths of ordered regions were more than 2 fold higher than the diameters of ordered regions of arrays on flat substrates. The characterization accomplished in this work will be used to compare block copolymers with similar volume fractions of the blocks that allow sphere microdomain formation but of different molecular weights. The ultimate goals are to establish how the molecular weight of this block copolymer affects its self assembly on templated and on flat substrates and to use this factor as well as fabrication conditions and template geometries to engineer arrays with desirable properties.

Book Materials Nanoarchitectonics

Download or read book Materials Nanoarchitectonics written by Katsuhiko Ariga and published by Elsevier. This book was released on 2023-12-15 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems Discusses novel approaches towards the creation of complex multiscale architectures

Book Complex Macromolecular Architectures

Download or read book Complex Macromolecular Architectures written by Nikos Hadjichristidis and published by John Wiley & Sons. This book was released on 2011-04-20 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of CMA (complex macromolecular architecture) stands at the cutting edge of materials science, and has been a locus of intense research activity in recent years. This book gives an extensive description of the synthesis, characterization, and self-assembly of recently-developed advanced architectural materials with a number of potential applications. The architectural polymers, including bio-conjugated hybrid polymers with poly(amino acid)s and gluco-polymers, star-branched and dendrimer-like hyperbranched polymers, cyclic polymers, dendrigraft polymers, rod-coil and helix-coil block copolymers, are introduced chapter by chapter in the book. In particular, the book also emphasizes the topic of synthetic breakthroughs by living/controlled polymerization since 2000. Furthermore, renowned authors contribute on special topics such as helical polyisocyanates, metallopolymers, stereospecific polymers, hydrogen-bonded supramolecular polymers, conjugated polymers, and polyrotaxanes, which have attracted considerable interest as novel polymer materials with potential future applications. In addition, recent advances in reactive blending achieved with well-defined end-functionalized polymers are discussed from an industrial point of view. Topics on polymer-based nanotechnologies, including self-assembled architectures and suprastructures, nano-structured materials and devices, nanofabrication, surface nanostructures, and their AFM imaging analysis of hetero-phased polymers are also included. Provides comprehensive coverage of recently developed advanced architectural materials Covers hot new areas such as: click chemistry; chain walking; polyhomologation; ADMET Edited by highly regarded scientists in the field Contains contributions from 26 leading experts from Europe, North America, and Asia Researchers in academia and industry specializing in polymer chemistry will find this book to be an ideal survey of the most recent advances in the area. The book is also suitable as supplementary reading for students enrolled in Polymer Synthetic Chemistry, Polymer Synthesis, Polymer Design, Advanced Polymer Chemistry, Soft Matter Science, and Materials Science courses. Color versions of selected figures can be found at www.wiley.com/go/hadjichristidis

Book Fabrication and Characterization of Self assembled 2 dimensional Nano structures

Download or read book Fabrication and Characterization of Self assembled 2 dimensional Nano structures written by Niels Eg Nissen and published by . This book was released on 2013 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Functional Materials from Colloidal Self assembly

Download or read book Functional Materials from Colloidal Self assembly written by George Zhao and published by John Wiley & Sons. This book was released on 2022-01-19 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive resource for new and veteran researchers in the field of self-assembling and functional materials In Functional Materials from Colloidal Self-assembly, a pair of distinguished researchers delivers a thorough overview of how the colloidal self-assembly approach can enable the design and fabrication of several functional materials and devices. Among other topics, the book explores the foundations of self-assembly in different systems, nucleation, the growth of nanoparticles, self-assembly of colloidal microspheres for photonic crystals and devices, and the self-assembly of amphiphilic molecules as a template for mesoporous materials. The authors also discuss the self-assembly of biomolecules, superstructures from self-assembly, architectures from self-assembly, and the applications of self-assembled nanostructures. Functional Materials from Colloidal Self-assembly provides a balanced approach to the theoretical background and applications of the subject, offering sound guidance to both experienced and early-career researchers. The book also delivers: A thorough introduction to the fundamentals of colloids, including the theory of nucleation and the growth of colloidal particles Comprehensive explorations of mechanisms and strategies for the self-assembly of colloidal particles, including DNA-mediated colloidal self-assembly Practical discussions of characterization techniques for self-assembled colloidal structures, including electron microscopy techniques and X-ray techniques In-depth examinations of biological and biomedical materials, including tissue engineering, drug loading and release, and biodetection Perfect for materials scientists, inorganic chemists, and catalytic chemists, Functional Materials from Colloidal Self-assembly is also a must-read reference for biochemists and surface chemists seeking a one-stop resource on self-assembling and functional materials.

Book Inorganic Nanoarchitectures by Organic Self Assembly

Download or read book Inorganic Nanoarchitectures by Organic Self Assembly written by Stefan Guldin and published by Springer Science & Business Media. This book was released on 2013-06-04 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Macromolecular self-assembly - driven by weak, non-covalent, intermolecular forces - is a common principle of structure formation in natural and synthetic organic materials. The variability in material arrangement on the nanometre length scale makes this an ideal way of matching the structure-function demands of photonic and optoelectronic devices. However, suitable soft matter systems typically lack the appropriate photoactivity, conductivity or chemically stability. This thesis explores the implementation of soft matter design principles for inorganic thin film nanoarchitectures. Sacrificial block copolymers and colloids are employed as structure-directing agents for the co-assembly of solution-based inorganic materials, such as TiO_2 and SiO_2. Novel fabrication and characterization methods allow unprecedented control of material formation on the 10 – 500 nm length scale, allowing the design of material architectures with interesting photonic and optoelectronic properties.

Book Self Assembled Bio Nanomaterials

Download or read book Self Assembled Bio Nanomaterials written by Gang Wei and published by MDPI. This book was released on 2020-03-25 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomolecular self-assembly provides a green, facile, and highly effective method to synthesize various functional nanomaterials that have exhibited considerable potential in the fields of nanotechnology, materials science, biomedicine, tissue engineering, food science, energy storage, and environmental science. In this collection of articles, we presented recent advance in the synthesis, characterization, and applications of self-assembled bio-nanomaterials. In a comprehensive review article, the controlled self-assembly of biomolecules including DNA, protein, peptide, enzymes, virus, and biopolymers via internal interactions and external simulations is introduced and discussed in detail. In other research articles, the self-assembly of DNA, protein, peptide, bio-drugs, liquid crystal polycarbonates, and diblock copolymers to various biomimetic/bioinspired nanomaterials and their potential applications in nanopatterning, sensors/biosensors, drug delivery, anti-parasite, and water purification are demonstrated.

Book Block Copolymer Nanocomposites

Download or read book Block Copolymer Nanocomposites written by Galder Kortaberria and published by CRC Press. This book was released on 2016-10-14 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the synthesis and characterization of nanocomposites based on block copolymers. Because of the self-assembly capability of block copolymers for the generation of nanostructures, besides their ability to nanostructure thermosetting matrices such as epoxy and polyester, binary or ternary nanocomposites can be prepared with different nanofillers such as nanoparticles and carbon nanotubes. The book starts with a review on nanocomposites based on block copolymers and nanoparticles synthesized with the use of surfactants, followed by a review on nanocomposites with metallic nanoparticles with polymer brushes and those with carbon nanotubes. A chapter is devoted to binary systems based on block copolymers and nanoparticles synthesized by sol-gel. A review on nanocomposites based on thermosetting matrices nanostructured with block copolymers (amphiphilic or chemically modified) is also presented for both epoxy and polyester resins. The work on ternary systems based on thermosetting matrices, block copolymers, and nanoparticles is presented next. The book concludes with a discussion on nanocomposites based on epoxy and block copolymers with azobenzene groups for optical purposes.

Book Templated Self assembly for Complex Pattern Fabrication

Download or read book Templated Self assembly for Complex Pattern Fabrication written by Jae-Byum Chang and published by . This book was released on 2014 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: The long-term goal of my Ph.D. study has been controlling the self-assembly of various materials using state-of-the-art nanofabrication techniques. Electron-beam lithography has been used for decades to generate nanoscale patterns, but its throughput is not high enough for fabricating sub-10-nm patterns over a large area. Templated block copolymer(BCP) self assembly is attractive for fabricating few-nanometer-scale structures at high throughput. On an unpattermed substrate, block copolymer self-assembly generates dense arrays of lines or dots without long-range order. Fortunately, physical features defined by electron lithography can guide the self-assembly of block copolymer. In our previous work, the orientation of cylindrical phase block copolymer was controlled simply by changing the distance between physical features, and resulting polymer patterns were analyzed by an image analysis program. Here, we first demonstrated high throughput sub-10-nm feature sizes by applying the same approach to a cylindrical morphology 16kg/mol PS-PDMS block copolymer. The half-pitch of the PDMS cylinders of this block copolymer film is 9 nm, so sub-10-nm structures can be fabricated. We also applied the similar approach to a triblock terpolymer to achieve dot patterns with square symmetry. To achieve a more complex pattern, electron-beam induced cross-linking of a block copolymer and second solvent-annealing process was used. By using this method, a line-dot hybrid pattern was achieved. Despite that the block copolymer self-assembly area had been heavily studied, researchers had yet to ascertain how to design nanostructures to achieve a desired target pattern using block copolymers. To address this problem, we developed a modular method that greatly simplifies the nanostructure design, and using this method, we achieved a circuit-like block-copolymer pattern over a large area. The key innovation is the use of a binary set of tiles that can be used to very simply cover the desired patterning area. Despite the simplicity of the approach, by exploiting neighbor-neighbor interactions of the tiles, a complex final pattern can be formed. The vision is thus one of programmability of patterning by using a simple instruction set. This development will thus be of interest to scientists and engineers across many fields involving self-assembly, including biomolecule, quantum-dot or nanowire positioning; algorithmic self-assembly; and integrated-circuit development. We applied this concept - controlling the assembly of materials using nanostructures - to a different material, protein. Single-molecule protein arrays are useful tools for studying biological phenomena at the single-molecule level, but have been developed only for a few specific proteins using the streptavidin-biotin complex as a linker. By using carefully designed gold nanopatterns and cysteine-gold interaction, we developed a process to make single-molecule protein arrays that can be used for patterning a broad range of proteins.

Book Fabrication and Characterization of Novel Nanostructures Based on Block Copolymer Lithography

Download or read book Fabrication and Characterization of Novel Nanostructures Based on Block Copolymer Lithography written by Vivian Peng-Wei Chuang and published by . This book was released on 2009 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: (cont.) As the inter-hole spacing is decreased, both experiment and simulation results show that the coercivity and switching field distribution is reduced, unlike the behavior seen in films with micron- sized holes. In the multilayer, unlike the continuous film, the NiFe reverses at positive fields due to the strong magnetostatic interactions between the Co and NiFe layers present near the holes. Finally, arrays of high-aspect-ratio single crystal silicon nanowires (SiNWs) have also been fabricate by combining block copolymer lithography and metal assisted etching. These SiNWs may be useful in the application of field-effect biosensors and lithium batteries.

Book Self assembled Nanostructured Materials

Download or read book Self assembled Nanostructured Materials written by Yunfeng Lu and published by . This book was released on 2003 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructures with critical dimensions less than 100nm endow materials with unique and often superior mechanical, electronic, magnetic and optical properties, which are expected to lead to numerous advanced applications. The current nanotechnology roadmap focuses on exploration and prediction of novel properties of materials at the nanoscale, of efficient synthesis and manufacture of nanoscale materials, and of the integration of nanoscale materials into real-world devices and applications. Self assembly, in which complex building blocks are organized into hierarchical structures via noncovalent interactions, has emerged as one of the most promising techniques for the efficient fabrication of nanostructured materials. This proceedings volume focuses on synthesis of novel nanostructured materials via self assembly, the fundamental understanding of self-assembly processes, the unique properties of nanostructured materials, and their potential applications. The volume is a compendium of current discussions of these topics with special emphasis on the synthesis and fabrication of nanostructured materials via self assembly of organic molecules such as surfactants and block copolymers, inorganic and metallic nanoclusters, nanoparticles, nanorods, nanowires, and other building blocks. It also contains reports on the novel properties and applications of nanostructured materials.

Book Synthesis  Characterization and Application of Block Copolymer and Nanoparticle Composites

Download or read book Synthesis Characterization and Application of Block Copolymer and Nanoparticle Composites written by Yue Gai and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The "bottom-up" fabrication of functional hybrid material can be achieved by using directed self-assembly of functional nanoparticles (NP) and block copolymers (BCP) as templates. The versatile nanostructures of BCP provide possibilities to precisely control NPs spatial distribution and the resulting hybrid materials exhibit enhanced electrical, mechanical and optical functionalities. Three main topics related to BCP/NP composites are discussed in this dissertation: I) the spatial distribution of large NP in linear BCP; II) the morphology control of BCP templates with new architectures; and III) the magneto-optical properties of hybrid material using magnetic NPs. For well-ordered BCP/NP composite, the ratio of NP core diameter (dcore) and BCP domain width (L) has been generally limited with dcore/L 0.3 when BCP/NP interactions are relatively neutral or weak. By modifying the Au NPs with hydrogen bonding (H-bonding) donor group, the selective spatial distribution of Au NPs ranges in size up to 0.8 times that of the target domain width in symmetric polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP). In addition, H-bonding meditated 15 nm NPs can be directed by linear BCP of dsubcore/sub/L up to 0.4 at 20wt % loading. The H-bonding interactions between NP and BCP provide favorable enthalpic interaction to overcome the inherent entropy penalties mainly arising from polymer chain stretching upon the sequestration of large particles. On the other hand, the extensive chain entanglements of linear BCP still remain a challenge for hybrid materials with the consequence of long processing duration, many defects and lack of orientation. Bottlebrush BCPs (BBCPs) exhibit much lower degree of chain entanglement due to the highly extended confirmation. A systematic study was conducted to investigate the morphology transitions that occur in polystyrene-block-poly (ethylene oxide) (PS-b-PEO) BBCPs upon varying PEO volume fraction (fsubPEO/sub) from 22 % to 81 %. Either symmetric or asymmetric lamellar morphologies were observed in the BBCPs over an exceptionally wide range of fsubPEO/sub from 28 % to 72 %. A microphase transition temperature TsubMST/sub was observed over a temperature range of 150-180 °C. Finally, enhanced magneto-optical (MO) composites with excellent Faraday rotation (FR) response were fabricated using iron platinum (FePt) NPs and PS-b-P2VP linear BCP. Gallic acid (GA) functionalized FePt NPs with average dsubcore/sub from 1.9 to 9.3 nm were selectively incorporated into a P2VP domain through H-bonding interactions. The use of copolymer template to selectively arrange the magnetic NPs enabled high MO performance with limited trade-off of scattering loss, providing a simple strategy to prepare functional materials for MO applications. Verdet constants of a 10 wt % loaded 4.9 nm FePt NP composite reached absolute magnitudes as high as ~ -6x10sup4

Book Introduction to Nanoscale Science and Technology

Download or read book Introduction to Nanoscale Science and Technology written by Massimiliano Ventra and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "...A class in nanoscale science and technology is daunting for the educator, who must organize a large collection of materials to cover the field, and for the student, who must absorb all the new concepts. This textbook is an excellent resource that allows students from any engineering background to quickly understand the foundations and exciting advances of the field. The example problems with answers and the long list of references in each chapter are a big plus for course tutors. The book is organized into seven sections. The first, nanoscale fabrication and characterization, covers nanolithography, self-assembly, and scanning probe microscopy. Of these, we enjoyed the section on nanolithography most, as it includes many interesting details from industrial manufacturing processes. The chapter on self-assembly also provides an excellent overview by introducing six types of intermolecular interactions and the ways these can be employed to fabricate nanostructures. The second section covers nanomaterials and nanostructures. Out of its 110 pages, 45 are devoted to carbon nanotubes. Fullerenes and quantum dots each have their own chapter that focuses on the properties and applications of these nanostructures. Nanolayer, nanowire, and nanoparticle composites of metals and semiconductors are briefly covered (just 12 pages), with slightly more discussion of specific applications. The section on nanoscale electronics begins with a history of microelectronics before discussing the difficulties in shrinking transistor size further. The discussion of problems (leakage current, hot electrons, doping fluctuations, etc.) and possible solutions (high- k dielectrics, double-gate devices) could easily motivate deeper discussions of nanoscale electrical transport. A chapter on molecular electronics considers transport through alkanes, molecular transistors, and DNA in a simple, qualitative manner we found highly instructive. Nanoscale magnetic systems are examined in the fourth section. The concept of quantum computation is nicely presented, although the discussion of how this can be achieved with controlled spin states is (perhaps necessarily) not clear. We found the chapter on magnetic storage to be one of the most lucid in the book. The giant magnetoresistive effect, operation of spin valves, and issues in magnetic scaling are easier to understand when placed in the context of the modern magnetic hard disk drive. Micro- and nanoelectromechanical systems are covered with an emphasis on the integration of sensing, computation, and communication. Here, the student can see advanced applications of lithography. The sixth section, nanoscale optoelectronics, describes quantum dots, organic optoelectronics, and photonic crystals. The chapter on organic optoelectronics is especially clear in its discussion of the fundamentals of this complicated field. The book concludes with an overview of nanobiotechnology that covers biomimetics, biomolecular motors, and nanofluidics. Because so many authors have contributed to this textbook, it suffers a bit from repetition. However, this also allows sections to be omitted without any adverse effect on student comprehension. We would have liked to see more technology to balance the science; apart from the chapters on lithography and magnetic storage, little more than an acknowledgment is given to commercial applications. Overall, this book serves as an excellent starting point for the study of nanoscale science and technology, and we recommend it to anyone with a modest scientific background. It is also a great vehicle to motivate the study of science at a time when interest is waning. Nanotechnology educators should look no further." (MATERIALS TODAY, June 2005)