EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Organic Field Effect Transistors

Download or read book Organic Field Effect Transistors written by Ioannis Kymissis and published by Springer Science & Business Media. This book was released on 2008-12-25 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic Field Effect Transistors presents the state of the art in organic field effect transistors (OFETs), with a particular focus on the materials and techniques useful for making integrated circuits. The monograph begins with some general background on organic semiconductors, discusses the types of organic semiconductor materials suitable for making field effect transistors, the fabrication processes used to make integrated Circuits, and appropriate methods for measurement and modeling. Organic Field Effect Transistors is written as a basic introduction to the subject for practitioners. It will also be of interest to researchers looking for references and techniques that are not part of their subject area or routine. A synthetic organic chemist, for example, who is interested in making OFETs may use the book more as a device design and characterization reference. A thin film processing electrical engineer, on the other hand, may be interested in the book to learn about what types of electron carrying organic semiconductors may be worth trying and learning more about organic semiconductor physics.

Book Fabrication  Characterization  and Modeling of Organic Thin Film Transistors

Download or read book Fabrication Characterization and Modeling of Organic Thin Film Transistors written by John Charles McKeen and published by . This book was released on 2004 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Short Channel Organic Thin Film Transistors

Download or read book Short Channel Organic Thin Film Transistors written by Tarek Zaki and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This work takes advantage of high-resolution silicon stencil masks to build air-stable complementary OTFTs using a low-temperature fabrication process. Plastic electronics based on organic thin-film transistors (OTFTs) pave the way for cheap, flexible and large-area products. Over the past few years, OTFTs have undergone remarkable advances in terms of reliability, performance and scale of integration. Many factors contribute to the allure of this technology; the masks exhibit excellent stiffness and stability, thus allowing OTFTs with submicrometer channel lengths and superb device uniformity to be patterned. Furthermore, the OTFTs employ an ultra-thin gate dielectric that provides a sufficiently high capacitance to enable the transistors to operate at voltages as low as 3 V. The critical challenges in this development are the subtle mechanisms that govern the properties of aggressively scaled OTFTs. These mechanisms, dictated by device physics, are well described and implemented into circuit-design tools to ensure adequate simulation accuracy.

Book Organic Thin Film Transistor Integration

Download or read book Organic Thin Film Transistor Integration written by Flora Li and published by John Wiley & Sons. This book was released on 2011-03-21 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on organic electronics (or plastic electronics) is driven by the need to create systems that are lightweight, unbreakable, and mechanically flexible. With the remarkable improvement in the performance of organic semiconductor materials during the past few decades, organic electronics appeal to innovative, practical, and broad-impact applications requiring large-area coverage, mechanical flexibility, low-temperature processing, and low cost. Thus, organic electronics appeal to a broad range of electronic devices and products including transistors, diodes, sensors, solar cells, lighting, displays, and electronic identification and tracking devices A number of commercial opportunities have been identified for organic thin film transistors (OTFTs), ranging from flexible displays, electronic paper, radio-frequency identification (RFID) tags, smart cards, to low-cost disposable electronic products, and more are continually being invented as the technology matures. The potential applications for "plastic electronics" are huge but several technological hurdles must be overcome. In many of these applications, transistor serves as a fundamental building block to implement the necessary electronic functionality. Hence, research in organic thin film transistors (OTFTs) or organic field effect transistors (OFETs) is eminently pertinent to the development and realization of organic electronics. This book presents a comprehensive investigation of the production and application of a variety of polymer based transistor devices and circuits. It begins with a detailed overview of Organic Thin Film Transistors (OTFTs) and discusses the various possible fabrication methods reported so far. This is followed by two major sections on the choice, optimization and implementation of the gate dielectric material to be used. Details of the effects of processing on the efficiency of the contacts are then provided. The book concludes with a chapter on the integration of such devices to produce a variety of OTFT based circuits and systems. The key objective is to examine strategies to exploit existing materials and techniques to advance OTFT technology in device performance, device manufacture, and device integration. Finally, the collective knowledge from these investigations facilitates the integration of OTFTs into organic circuits, which is expected to contribute to the development of new generation of all-organic displays for communication devices and other pertinent applications. Overall, a major outcome of this work is that it provides an economical means for organic transistor and circuit integration, by enabling the use of a well-established PECVD infrastructure, while not compromising the performance of electronics. The techniques established here are not limited to use in OTFTs only; the organic semiconductor and SiNx combination can be used in other device structures (e.g., sensors, diodes, photovoltaics). Furthermore, the approach and strategy used for interface optimization can be extended to the development of other materials systems.

Book Fabrication and Characterization of Tin Monoxide Thin Film Transistors

Download or read book Fabrication and Characterization of Tin Monoxide Thin Film Transistors written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Organic Thin Film Transistors

Download or read book Organic Thin Film Transistors written by Srinivas Gowrisanker and published by . This book was released on 2009 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work pentacene thin-film transistors (TFTs) are fabricated and characterized on low temperature substrates for flexible electronic applications. Maximum processing temperature is

Book Fabrication and Characterization of Oxide based Thin Film Transistors  and Process Development for Oxide Heterostructures

Download or read book Fabrication and Characterization of Oxide based Thin Film Transistors and Process Development for Oxide Heterostructures written by Wantae Lim and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: This dissertation is focused on the development of thin film transistors (TFTs) using oxide materials composed of post-transitional cations with (n-1)d10ns0 (n[more than or equal to]4). The goal is to achieve high performance oxide-based TFTs fabricated at low processing temperature on either glass or flexible substrates for next generation display applications. In addition, etching mechanism and Ohmic contact formation for oxide heterostructure (ZnO/CuCrO2) system is demonstrated. The deposition and characterization of oxide semiconductors (In2O3-Zn0, and InGaZnO4) using a RF-magnetron sputtering system are studied. The main influence on the resistivity of the films is found to be the oxygen partial pressure in the sputtering ambient. The films remained amorphous and transparent (> 70%) at all process conditions. These films showed good transmittance at suitable conductivity for transistor fabrication. The electrical characteristics of both top- and bottom-gate type Indium Zinc Oxide (InZnO) and Indium Gallium Zinc Oxide (InGaZnO4)-based TFTs are reported. The InZnO films were favorable for depletion-mode TFTs due to their tendency to form oxygen vacancies, while enhancement-mode devices were realized with InGaZnO4 films. The InGaZnO4-based TFTs fabricated on either glass or plastic substrates at low temperature (

Book Fabrication and Characterization of Thin film Transistor Materials and Devices

Download or read book Fabrication and Characterization of Thin film Transistor Materials and Devices written by David Hong and published by . This book was released on 2009 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of inorganic thin-film transistor (TFT) semiconductor materials has emerged involving oxides composed of post-transitional cations with (n-1)d10ns° (n[greater than or equal to]4) electronic configurations. This thesis is devoted to the pursuit of topics involving the development of these materials for TFT applications: Deposition of zinc oxide and zinc tin oxide semiconductor layers via reactive sputtering from a metal target, and the characterization of indium gallium zinc oxide (IGZO)-based TFTs utilizing various insulator materials as the gate dielectric. The first topic involves the deposition of oxide semiconductor layers via reactive sputtering from a metal target. Two oxide semiconductors are utilized for fabricating TFTs via reactive sputtering from a metal target: zinc oxide and zinc tin oxide. With optimized processing parameters, zinc oxide and zinc tin oxide via this deposition method exhibit similar characteristics to TFTs fabricated via sputtering from a ceramic target. Additionally the effects of gate capacitance density and gate dielectric material are explored utilizing TFTs with IGZO as the semiconductor layers. IGZO-based TFTs exhibit ideal behavior with improved TFT performance such as higher current drive at a given overvoltage, a decrease in the subthreshold swing, and a decrease in the magnitude of the turn-on voltage. Additionally it is shown that silicon dioxide is the preferred dielectric material, with silicon nitride a poor choice for oxide-based TFTs. Finally a simple method to characterize the band tail state distribution near the conduction band minimum of a semiconductor by analyzing two-terminal current-voltage characteristics of a TFT with a floating gate is presented. The characteristics trap energy (E[subscript T]) as a function of post-deposition annealing temperature is shown to correlate very well with IGZO TFT performance, with a lower value of E[subscript T], corresponding to a more abrupt distribution of band tail states, correlating with improved TFT mobility. It is shown that as the post-deposition anneal temperature increases, the total number of band tail states does not change significantly, however the energy distribution of these states approaches that of a crystalline material.