EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fabrication and Characterization of High Performance Silicon Nanowire Field Effect Transistors

Download or read book Fabrication and Characterization of High Performance Silicon Nanowire Field Effect Transistors written by Muhammad Maksudur Rahman and published by . This book was released on 2011 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quasi one-dimensional (1-D) field-effect transistors (FET), such as Si nanowire FETs (Si NW-FETs), have shown promise for more aggressive channel length scaling, better electrostatic gate control, higher integration densities and low-power applications. At the same time, an accurate bench-marking of their performance remains a challenging task due to difficulties in definition of the exact channel length, gate capacitance and transconductance. In 1-D Si FETs, one also often observes a significant degradation of their mobility and on/off ratio. The goal of this study is to implement the idea of the FET performance enhancement while simultaneously performing a more rigorous data extraction. To achieve these goals, we fabricated dual-gate undoped Si NW-FETs with various NW diameters The Si NWs are grown by Au-catalyzed vapor-transport For our top-gate NW-FET, the subthreshold swing was determined to be 85-90 mV/decade, whereas the best subthreshold swings for Si NW-FETs until now were ~135-140 mV/decade. We achieved a ON/OFF current ratio of 10 7 due to improved electrostatic control and electron transport conditions inside the channel. This is on the higher end of any ON/OFF ratios thus far reported for NW FETs The hole mobility in our NW-FETs was around 250.400 cm[superscript 2] /Vs, according to different extraction procedures. In our mobility calculations we included the NW silicidation effect, which reduces the effective channel length. We calculated the top gate capacitance using Technology Computer Aided Design (TCAD) Sentaurus simulator, which gives more accurate value of capacitance of the NW over any analytical formulas. Thus we fabricate and rigorously study Si NW.s intrinsic properties which are very important for digital logic circuit application. In the second part of the study, we carried out simulation of Si NW FET devices to shed light on the carrier transport behavior that also explains experimental data.

Book Organic Field Effect Transistors

Download or read book Organic Field Effect Transistors written by Ioannis Kymissis and published by Springer Science & Business Media. This book was released on 2008-12-25 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic Field Effect Transistors presents the state of the art in organic field effect transistors (OFETs), with a particular focus on the materials and techniques useful for making integrated circuits. The monograph begins with some general background on organic semiconductors, discusses the types of organic semiconductor materials suitable for making field effect transistors, the fabrication processes used to make integrated Circuits, and appropriate methods for measurement and modeling. Organic Field Effect Transistors is written as a basic introduction to the subject for practitioners. It will also be of interest to researchers looking for references and techniques that are not part of their subject area or routine. A synthetic organic chemist, for example, who is interested in making OFETs may use the book more as a device design and characterization reference. A thin film processing electrical engineer, on the other hand, may be interested in the book to learn about what types of electron carrying organic semiconductors may be worth trying and learning more about organic semiconductor physics.

Book Fabrication and Characterization of Zinc Oxide Nanowire Field Effect Transistors

Download or read book Fabrication and Characterization of Zinc Oxide Nanowire Field Effect Transistors written by Vamsi Krishna Kunapuli and published by . This book was released on 2008 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fabrication and Characterization of a Silicon Nanowire Based Schottky barrier Field Effect Transistor Platform for Functional Electronics and Biosensor Applications

Download or read book Fabrication and Characterization of a Silicon Nanowire Based Schottky barrier Field Effect Transistor Platform for Functional Electronics and Biosensor Applications written by Sebastian Pregl and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fabrication and Characterization of Metal Oxide Semiconductor Field Effect Transistors on Silicon on Insulator Substrate

Download or read book Fabrication and Characterization of Metal Oxide Semiconductor Field Effect Transistors on Silicon on Insulator Substrate written by David T. Mathis and published by . This book was released on 2011 with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanowire Field Effect Transistors  Principles and Applications

Download or read book Nanowire Field Effect Transistors Principles and Applications written by Dae Mann Kim and published by Springer Science & Business Media. This book was released on 2013-10-23 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

Book Silicon Nanowire Transistors

Download or read book Silicon Nanowire Transistors written by Ahmet Bindal and published by Springer. This book was released on 2016-02-23 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI.

Book Fabrication and Characterization of Vertical Silicon Nanowire Arrays

Download or read book Fabrication and Characterization of Vertical Silicon Nanowire Arrays written by Jeffrey M. Weisse and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoelectric devices, which convert temperature gradients into electricity, have the potential to harness waste heat to improve overall energy efficiency. However, current thermoelectric devices are not cost-effective for most applications due to their low efficiencies and high material costs. To improve the overall conversion efficiency, thermoelectric materials should possess material properties that closely resemble a "phonon glass" and an "electron crystal". The desired low thermal and high electrical conductivities allow the thermoelectric device to maintain a high temperature gradient while effectively transporting current. Unfortunately, thermal transport and electrical transport are a closely coupled phenomena and it is difficult to independently engineer each specific conduction mechanism in conventional materials. One strategy to realize this is to generate nanostructured silicon (e.g. silicon nanowires (SiNWs)), which have been shown to reduce thermal conductivity ([kappa]) through enhanced phonon scattering while theoretically preserving the electronic properties; therefore, improving the overall device efficiency. The ability to suppress phonon propagation in nanostructured silicon, which has a bulk phonon mean free path ~ 300 nm at 300 K, has raised substantial interest as an ultra-low [kappa] material capable of reducing the thermal conductivity up to three orders of magnitude lower than that of bulk silicon. While the formation of porous silicon and SiNWs has individually been demonstrated as promising methods to reduce [kappa], there is a lack of research investigating the thermal conductivity in SiNWs containing porosity. We fabricated SiNW arrays using top-down etching methods (deep reactive ion etching and metal-assisted chemical etching) and by tuning the diameter with different patterning methods and tuning the internal porosity with different SiNW etching conditions. The effects of both the porosity and the SiNW dimensions at the array scale are investigated by measuring [kappa] of vertical SiNW arrays using a nanosecond time-domain thermoreflectance technique. In addition to thermoelectric devices, vertical SiNW arrays, due to their anisotropic electronic and optical properties, large surface to volume ratios, resistance to Li-ion pulverization, ability to orthogonalize light absorption and carrier transport directions, and trap light, make vertical SiNW arrays important building blocks for various applications. These may include sensors, solar cells, and Li-ion batteries. Many of these applications benefit from vertical SiNW arrays fabricated on non-silicon based substrates which endow the final devices with the properties of flexibility, transparency, and light-weight while removing any performance limitation of the silicon fabrication substrate. We then developed two vertical transfer printing methods (V-TPMs) that are used to detach SiNW arrays from their original fabrication substrates and subsequently attach them to any desired substrate while retaining their vertical alignment over a large area. The transfer of vertically aligned arrays of uniform length SiNWs is desirable to remove the electrical, thermal, optical, and structural impact from the fabrication substrate and also to enable the integration of vertical SiNWs directly into flexible and conductive substrates. Moreover, realization of a thermoelectric device requires the formation of electrical contacts on both sides of the SiNW arrays. We formed metallic contacts on both ends of the SiNW arrays with a mechanical supporting and electrical insulating polymer in between. Electrical characterization of the SiNW devices exhibited good current-voltage (I-V) characteristics independent of substrates materials and bending conditions. We believe the V-TPMs developed in this work have great potential for manufacturing practical thermoelectric devices as well as high performing, scalable SiNW array devices on flexible and conducting substrates.

Book Design  Fabrication and Characterization of Field effect Transistors Based on Two dimensional Materials and Their Circuit Applications

Download or read book Design Fabrication and Characterization of Field effect Transistors Based on Two dimensional Materials and Their Circuit Applications written by Sk. Fahad Chowdhury and published by . This book was released on 2015 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of two-dimensional layered materials has witnessed extensive research activities during the past decade, which commenced with the seminal work of isolating graphene from bulk graphite. In addition to providing a rich playground for scientific experiments, graphene has soon become a material of technological interest for many of its fascinating electrical, thermal, mechanical and optical properties. The controllability of carrier density with electric field in graphene, along with very high carrier mobility and saturation velocity, has motivated the use of graphene channel in field-effect devices. Also, the two-dimensional layered materials family has grown very rapidly with the application of the graphene exfoliation technique and many of these elemental and compound materials are considered useful for transistor applications. In this work, various aspects of the use of two-dimensional layered materials for transistor applications were analyzed. Starting with material synthesis, field-effect transistors (FETs) were designed, fabricated and tested for their DC and high frequency performances. Through the detailed electrical and spectroscopic investigations of several processing techniques for enhanced FET performance, numerous insights were obtained into the FET operation and performance bottlenecks. The reduction of charged impurity scattering in graphene FET by Hexamethyldisilazane interaction improved field-effect mobility and reduced residual carrier concentration. This technique was also shown to be promising for other two-dimensional materials based FET. A useful technique for reducing the thickness of black phosphorus flake with oxygen plasma etching was developed. Both back-gated and top-gated FETs were implemented with good performances. Secondary ion mass spectroscopy and x-ray photoelectron spectroscopy revealed vital structural information about layered black phosphorus. Lastly, these exotic materials based FETs were characterized for their high frequency performance, resulting in gigahertz range transit frequency and operated in a variety of important circuit configurations such as frequency multiplier, amplifier, mixer and AM demodulator.

Book Nanowire Transistors

Download or read book Nanowire Transistors written by Jean-Pierre Colinge and published by Cambridge University Press. This book was released on 2016-04-21 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: From quantum mechanical concepts to practical circuit applications, this book presents a self-contained and up-to-date account of the physics and technology of nanowire semiconductor devices. It includes a unified account of the critical ideas central to low-dimensional physics and transistor physics which equips readers with a common framework and language to accelerate scientific and technological developments across the two fields. Detailed descriptions of novel quantum mechanical effects such as quantum current oscillations, the metal-to-semiconductor transition and the transition from classical transistor to single-electron transistor operation are described in detail, in addition to real-world applications in the fields of nanoelectronics, biomedical sensing techniques, and advanced semiconductor research. Including numerous illustrations to help readers understand these phenomena, this is an essential resource for researchers and professional engineers working on semiconductor devices and materials in academia and industry.