Download or read book Rectifiability written by Pertti Mattila and published by Cambridge University Press. This book was released on 2023-01-12 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rectifiable sets, measures, currents and varifolds are foundational concepts in geometric measure theory. The last four decades have seen the emergence of a wealth of connections between rectifiability and other areas of analysis and geometry, including deep links with the calculus of variations and complex and harmonic analysis. This short book provides an easily digestible overview of this wide and active field, including discussions of historical background, the basic theory in Euclidean and non-Euclidean settings, and the appearance of rectifiability in analysis and geometry. The author avoids complicated technical arguments and long proofs, instead giving the reader a flavour of each of the topics in turn while providing full references to the wider literature in an extensive bibliography. It is a perfect introduction to the area for researchers and graduate students, who will find much inspiration for their own research inside.
Download or read book Methods of Geometric Analysis in Extension and Trace Problems written by Alexander Brudnyi and published by Springer Science & Business Media. This book was released on 2011-10-07 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.
Download or read book Metric Structures for Riemannian and Non Riemannian Spaces written by Mikhail Gromov and published by Springer Science & Business Media. This book was released on 2007-06-25 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an English translation of the famous "Green Book" by Lafontaine and Pansu (1979). It has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices, by Gromov on Levy's inequality, by Pansu on "quasiconvex" domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures, as well as an extensive bibliography and index round out this unique and beautiful book.
Download or read book An Introduction to the Heisenberg Group and the Sub Riemannian Isoperimetric Problem written by Luca Capogna and published by Springer Science & Business Media. This book was released on 2007-08-08 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.
Download or read book Metric and Differential Geometry written by Xianzhe Dai and published by Springer Science & Business Media. This book was released on 2012-06-01 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metric and Differential Geometry grew out of a similarly named conference held at Chern Institute of Mathematics, Tianjin and Capital Normal University, Beijing. The various contributions to this volume cover a broad range of topics in metric and differential geometry, including metric spaces, Ricci flow, Einstein manifolds, Kähler geometry, index theory, hypoelliptic Laplacian and analytic torsion. It offers the most recent advances as well as surveys the new developments. Contributors: M.T. Anderson J.-M. Bismut X. Chen X. Dai R. Harvey P. Koskela B. Lawson X. Ma R. Melrose W. Müller A. Naor J. Simons C. Sormani D. Sullivan S. Sun G. Tian K. Wildrick W. Zhang
Download or read book Groupoid Metrization Theory written by Dorina Mitrea and published by Springer Science & Business Media. This book was released on 2012-12-15 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics in this research monograph are at the interface of several areas of mathematics such as harmonic analysis, functional analysis, analysis on spaces of homogeneous type, topology, and quasi-metric geometry. The presentation is self-contained with complete, detailed proofs, and a large number of examples and counterexamples are provided. Unique features of Metrization Theory for Groupoids: With Applications to Analysis on Quasi-Metric Spaces and Functional Analysis include: * treatment of metrization from a wide, interdisciplinary perspective, with accompanying applications ranging across diverse fields; * coverage of topics applicable to a variety of scientific areas within pure mathematics; * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * coverage of topics applicable to a variety of scientific areas within pure mathematics; * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * useful techniques and extensive reference material; * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. * includes sharp results in the field of metrization. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties. Professional mathematicians with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. At the same time, the monograph is accessible and will be of use to advanced graduate students and to scientifically trained readers with an interest in the interplay among topology and metric properties and/or functional analysis and metric properties.
Download or read book Geometric Aspects of Harmonic Analysis written by Paolo Ciatti and published by Springer Nature. This book was released on 2021-09-27 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume originated in talks given in Cortona at the conference "Geometric aspects of harmonic analysis" held in honor of the 70th birthday of Fulvio Ricci. It presents timely syntheses of several major fields of mathematics as well as original research articles contributed by some of the finest mathematicians working in these areas. The subjects dealt with are topics of current interest in closely interrelated areas of Fourier analysis, singular integral operators, oscillatory integral operators, partial differential equations, multilinear harmonic analysis, and several complex variables. The work is addressed to researchers in the field.
Download or read book Recent Trends in Nonlinear Analysis written by Jürgen Appell and published by Birkhäuser. This book was released on 2012-12-06 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a collection of 21 original research papers which report on recent developments in various fields of nonlinear analysis. The collection covers a large variety of topics ranging from abstract fields such as algebraic topology, functional analysis, operator theory, spectral theory, analysis on manifolds, partial differential equations, boundary value problems, geometry of Banach spaces, measure theory, variational calculus, and integral equations, to more application-oriented fields like control theory, numerical analysis, mathematical physics, mathematical economy, and financial mathematics. The book is addressed to all specialists interested in nonlinear functional analysis and its applications, but also to postgraduate students who want to get in touch with this important field of modern analysis. It is dedicated to Alfonso Vignoli who has essentially contributed to the field, on the occasion of his sixtieth birthday.
Download or read book Abstracts of Papers Presented to the American Mathematical Society written by American Mathematical Society and published by . This book was released on 2007 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Excursions in Harmonic Analysis Volume 6 written by Matthew Hirn and published by Springer Nature. This book was released on 2021-09-01 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: John J. Benedetto has had a profound influence not only on the direction of harmonic analysis and its applications, but also on the entire community of people involved in the field. The chapters in this volume – compiled on the occasion of his 80th birthday – are written by leading researchers in the field and pay tribute to John’s many significant and lasting achievements. Covering a wide range of topics in harmonic analysis and related areas, these chapters are organized into four main parts: harmonic analysis, wavelets and frames, sampling and signal processing, and compressed sensing and optimization. An introductory chapter also provides a brief overview of John’s life and mathematical career. This volume will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.
Download or read book Stratified Lie Groups and Potential Theory for Their Sub Laplacians written by Andrea Bonfiglioli and published by Springer Science & Business Media. This book was released on 2007-08-24 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
Download or read book Analytic Capacity the Cauchy Transform and Non homogeneous Calder n Zygmund Theory written by Xavier Tolsa and published by Springer Science & Business Media. This book was released on 2013-12-16 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995–2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin’s conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.
Download or read book Singular Integrals written by Alberto P. Calderón and published by . This book was released on 1967 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Proceedings of the Conference on Differential Difference Equations and Applications written by Ravi P. Agarwal and published by Hindawi Publishing Corporation. This book was released on 2006 with total page 1266 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book written by and published by . This book was released on 2000 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Coarse Geometry of Topological Groups written by Christian Rosendal and published by Cambridge University Press. This book was released on 2021-12-16 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a general framework for doing geometric group theory for non-locally-compact topological groups arising in mathematical practice.
Download or read book Fractured Fractals and Broken Dreams written by Guy David and published by Oxford University Press. This book was released on 1997 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes new notions of coherent geometric structure. Fractal patterns have emerged in many contexts, but what exactly is a "pattern" and what is not? How can one make precise the structures lying within objects and the relationships between them? The foundations laid herein provide a fresh approach to a familiar field. From this emerges a wide range of open problems, large and small, and a variety of examples with diverse connections to other parts of mathematics. One of the main features of the present text is that the basic framework is completely new. This makes it easier for people to get into the field. There are many open problems, with plenty of opportunities that are likely to be close at hand, particularly as concerns the exploration of examples. On the other hand the general framework is quite broad and provides the possibility for future discoveries of some magnitude. Fractual geometries can arise in many different ways mathematically, but there is not so much general language for making comparisons. This book provides some tools for doing this, and a place where researchers in different areas can find common ground and basic information.