EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Exploring Nanoscale Properties of Organic Solar Cells

Download or read book Exploring Nanoscale Properties of Organic Solar Cells written by Tobias Mönch and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoscale Investigation and Control of the Interfacial Properties of Organic Solar Cells and Organic Thin Film Transistors

Download or read book Nanoscale Investigation and Control of the Interfacial Properties of Organic Solar Cells and Organic Thin Film Transistors written by Mahdieh Aghamohammadi and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Liming Ding and published by John Wiley & Sons. This book was released on 2022-02-09 with total page 988 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic Solar Cells A timely and singular resource on the latest advances in organic photovoltaics Organic photovoltaics are gaining widespread attention due to their solution processability, tunable electronic properties, low temperature manufacture, and cheap and light materials. Their wide range of potential applications may result in significant near-term commercialization of the technology. In Organic Solar Cells: Materials Design, Technology and Commercialization, renowned scientist Dr. Liming Ding delivers a comprehensive exploration of organic solar cells, including discussions of their key materials, mechanisms, molecular designs, stability features, and applications. The book presents the most state-of-the-art developments in the field alongside fulsome treatments of the commercialization potential of various organic solar cell technologies. The author also provides: Thorough introductions to fullerene acceptors, polymer donors, and non-fullerene small molecule acceptors Comprehensive explorations of p-type molecular photovoltaic materials and polymer-polymer solar cell materials, devices, and stability Practical discussions of electron donating ladder-type heteroacenes for photovoltaic applications In-depth examinations of chlorinated organic and single-component organic solar cells, as well as the morphological characterization and manipulation of organic solar cells Perfect for materials scientists, organic and solid-state chemists, and solid-state physicists, Organic Solar Cells: Materials Design, Technology and Commercialization will also earn a place in the libraries of surface chemists and physicists and electrical engineers.

Book Nanotechnology for Photovoltaics

Download or read book Nanotechnology for Photovoltaics written by Loucas Tsakalakos and published by CRC Press. This book was released on 2010-03-25 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current concerns regarding greenhouse gas-related environmental effects, energy security, and the rising costs of fossil fuel-based energy has renewed interest in solar energy in general and photovotaics in particular. Exploring state-of-the-art developments from a practical point of view, Nanotechnology for Photovoltaics examines issues in increas

Book Exploring Organic Solar Cells with Scanning Probe Microscopy

Download or read book Exploring Organic Solar Cells with Scanning Probe Microscopy written by David Coffey and published by VDM Publishing. This book was released on 2008 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Future-generation solar cells are continually being introduced and refined. These new designs, however, are often based on new materials and there is a lack of fundamental understanding about how such devices work and how they can be improved. Conjugated polymers and small molecules are two such promising classes of materials suited for use in low-cost, thin-film solar cells. The performance of these materials, however, is highly dependent on film structure, and directly correlating local film structures with device performance remains challenging. This work describes several new techniques developed to probe and control the local optoelectronic properties of organic semiconducting films. These techniques include electrostatic force microscopy (trEFM), photoconductive atomic force microscopy (pcAFM), and a fabrication technique based on Dip-Pen Nanolithography (DPN). Taken together, these methods provide a first nanoscale look a charge and current generation in organic photovoltaic films. This work introduces these new techniques for the reader and details how they are being used to solve current scientific questions.

Book Solar Cells

Download or read book Solar Cells written by S. K. Sharma and published by Springer Nature. This book was released on 2020-01-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the rapidly developing class of solar cell materials and designed to provide much needed information on the fundamental principles of these materials, together with how these are employed in photovoltaic applications. A special emphasize have been given for the space applications through study of radiation tolerant solar cells. This book present a comprehensive research outlining progress on the synthesis, fabrication and application of solar cells from fundamental to device technology and is helpful for graduate students, researchers, and technologists engaged in research and development of materials.

Book Organic Solar Cells

    Book Details:
  • Author : Qiquan Qiao
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1351831216
  • Pages : 510 pages

Download or read book Organic Solar Cells written by Qiquan Qiao and published by CRC Press. This book was released on 2017-12-19 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.

Book Green Photonics and Electronics

Download or read book Green Photonics and Electronics written by Gadi Eisenstein and published by Springer. This book was released on 2017-11-18 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This books focuses on recent break-throughs in the development of a variety of photonic devices, serving distances ranging from mm to many km, together with their electronic counter-parts, e.g. the drivers for lasers, the amplifiers following the detectors and most important, the relevant advanced VLSI circuits. It explains that as a consequence of the increasing dominance of optical interconnects for high performance workstation clusters and supercomputers their complete design has to be revised. This book thus covers for the first time the whole variety of interdependent subjects contributing to green photonics and electronics, serving communication and energy harvesting. Alternative approaches to generate electric power using organic photovoltaic solar cells, inexpensive and again energy efficient in production are summarized. In 2015, the use of the internet consumed 5-6% of the raw electricity production in developed countries. Power consumption increases rapidly and without some transformational change will use, by the middle of the next decade at the latest, the entire electricity production. This apocalyptic outlook led to a redirection of the focus of data center and HPC developers from just increasing bit rates and capacities to energy efficiency. The high speed interconnects are all based on photonic devices. These must and can be energy efficient but they operate in an electronic environment and therefore have to be considered in a wide scope that also requires low energy electronic devices, sophisticated circuit designs and clever architectures. The development of the next generation of high performance exaFLOP computers suffers from the same problem: Their energy consumption based on present device generations is essentially prohibitive.

Book Nanoscale Morphology of Organic Solar Cells

Download or read book Nanoscale Morphology of Organic Solar Cells written by 林志誠 and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Correlating structure and function in small molecule organic solar cells by means of scanning probe and electron microscopy

Download or read book Correlating structure and function in small molecule organic solar cells by means of scanning probe and electron microscopy written by Michael Scherer and published by BoD – Books on Demand. This book was released on 2016-07-20 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work nanoscale properties in active layers of small molecule organic solar cells are studied regarding their impact on device performance. For this, the effect of variations in stack design and process conditions is examined both electrically and with high resolution imaging techniques. Two topics are addressed: (i) the visualization of charge extraction/injection properties of solar cell contacts and (ii) the tailoring of structural properties of co-evaporated material blends for bulk heterojunction (BHJ) organic solar cells. (i) We study the impact of controlled contact manipulation on the internal electric potential distribution of fluorinated zincphtalocyanine (F4ZnPc)/fullerene (C60) organic solar cells under operating conditions. In a detailed analytical study using photoelectron spectroscopy and in-operando scanning Kelvin probe microscopy it is demonstrated that the electric field distribution of organic solar cells at the maximum power point depends in an overproportional manner on contact properties and ranges from bulk to contact dominated even for solar cells with decent device performance. (ii) The morphology of co-evaporated active layer blends depends on both substrate and substrate temperature. Here we study the morphology of F4ZnPc:C60 blends with analytical transmission electron microscopy. For all substrates used is found that co-evaporation of the materials at elevated substrate temperature (100° Cel) induces a distinct phase segregation of F4ZnPc and C60. However, only when using a C60 underlayer, as in inverted devices, also the crystallinity of the segregated C60 phase increases. There is only a slight increase in crystallinity when F4ZnPc acts as an underlayer, as typically for non-inverted devices. Solar cell characterization reveals that the crystalline C60 domains are the main driving force for enhanced free charge carrier generation and higher power conversion efficiencies. With this we could provide a novel explanation why record efficiencies of small molecule organic solar cells are realized in inverted device architecture only.

Book Organic Solar Cells

    Book Details:
  • Author : Barry P. Rand
  • Publisher : CRC Press
  • Release : 2014-08-26
  • ISBN : 9814463663
  • Pages : 795 pages

Download or read book Organic Solar Cells written by Barry P. Rand and published by CRC Press. This book was released on 2014-08-26 with total page 795 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaic (OPV) cells have the potential to make a significant contribution to the increasing energy needs of the future. In this book, 15 chapters written by selected experts explore the required characteristics of components present in an OPV device, such as transparent electrodes, electron- and hole-conducting layers, as well as elect

Book Organic  Inorganic and Hybrid Solar Cells

Download or read book Organic Inorganic and Hybrid Solar Cells written by Ching-Fuh Lin and published by John Wiley & Sons. This book was released on 2012-09-04 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides detailed descriptions of organic, inorganic, and hybrid solar cells and the latest developments in the quest to produce low-cost, long-lasting solar cells What will it take to transform solar energy from an important alternative source to a truly competitive and, perhaps, dominant one? Lower cost and longer life. Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice provides in-depth information on the three types of existing solar cells, giving readers a good foundation for evaluating the technologies with the most potential for competing with energy from fossil fuels. Featuring a Foreword written by Nobel Peace Prize co-winner Dr. Woodrow W. Clark, this timely and comprehensive guide: Focuses on the realization of low-cost and long-life solar cells study and applications Reviews the properties of inorganic materials, primarily semiconductors Explores the electrical and optical properties of organic materials Discusses the interfacing of organic and inorganic materials: compatibility of deposition, the adhesion problem, formation of surface states, and band-level realignment Provides a detailed description of organic-inorganic hybrid solar cells, from the basic principles to practical devices Introduces a sandwiched structure for hybrid solar cells, which combines a far lower production cost than inorganic solar cells while stabilizing and extending the life of organic material far beyond that of organic solar cells Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice is a first-rate professional reference for electrical engineers and important supplemental reading for graduate students in related areas of study.

Book Molecular Devices for Solar Energy Conversion and Storage

Download or read book Molecular Devices for Solar Energy Conversion and Storage written by Haining Tian and published by Springer. This book was released on 2017-09-14 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows the different molecular devices used for solar energy conversion and storage and the important characterization techniques for this kind of device. It has five chapters describing representative molecule-based solar cells, such as organic solar cells, dye-sensitized solar cells and hybrid solar cells (perovskite solar cell and quantum dots solar cells). It also includes two chapters demonstrating the use of molecular devices in the areas of solar fuel, water splitting and carbon dioxide reduction. There are further two chapters with interesting examples of solar energy storage related devices, like solar flow battery, solar capacitor and solar energy-thermal energy storage. Three chapters introduce important techniques used to characterize, investigate and evaluate the mechanism of molecular devices. The final chapter discusses the stability of perovskite solar cells. This book is relevant for a wide readership, and is particularly useful for students, researchers and industrial professionals who are working on molecular devices for solar energy utilization.

Book Organic Nanomaterials

    Book Details:
  • Author : Tomas Torres
  • Publisher : John Wiley & Sons
  • Release : 2013-08-05
  • ISBN : 1118354362
  • Pages : 636 pages

Download or read book Organic Nanomaterials written by Tomas Torres and published by John Wiley & Sons. This book was released on 2013-08-05 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover a new generation of organic nanomaterials and their applications Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications. Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts: Part One introduces the fundamentals of nanomaterials and self-assembled nanostructures Part Two examines carbon nanostructures from fullerenes to carbon nanotubes to graphene reporting on properties, theoretical studies, and applications Part Three investigates key aspects of some inorganic materials, self-assembled monolayers, organic field effect transistors, and molecular self-assembly at solid surfaces Part Four explores topics that involve both biological aspects and nanomaterials such as biofunctionalized surfaces Part Five offers detailed examples of how organic nanomaterials enhance sensors and molecular photovoltaics Most of the chapters end with a summary highlighting the key points. References at the end of each chapter guide readers to the growing body of original research reports and reviews in the field. Reflecting the interdisciplinary nature of organic nanomaterials, this book is recommended for researchers in chemistry, physics, materials science, polymer science, and chemical and materials engineering. All readers will learn the principles of synthesizing and characterizing new organic nanomaterials in order to support a broad range of exciting new applications.

Book Studies of Organic Semiconductor Nanostructures and Their Photovoltaic Applications

Download or read book Studies of Organic Semiconductor Nanostructures and Their Photovoltaic Applications written by Guoqiang Ren and published by . This book was released on 2013 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells are promising by virtue of their low-cost production, mechanical flexibility of plastics, and the range of possible applications. Although progress has been made in developing organic solar cells in the past decade, the power conversion efficiency now about 8-10% is still substantially lower than silicon-based devices. It has been recognized that the photovoltaic conversion process in organic solar cells is dependent on the morphology of the photoactive layer which consists of a binary blend of donor and acceptor materials. This work explores different approaches to controlling the morphology of bulk heterojunction polymer solar cells towards improving the photovoltaic efficiency, including diblock copolymer assemblies, organic semiconductor nanowires, and the use of processing additives. In addition, we explore a new method of characterizing the nanoscale morphology of polymer solar cells. Investigation of the photovoltaic properties, charge transport, and morphology of a series of diblock conjugated copolymers as a function of block composition showed that the highest efficiency was achieved at the 50% block composition. Nanowires assembled from diblock copolythiophenes of different compositions showed a tunable average aspect ratio (length/width) of 50-260, which revealed an increase of efficiency with increasing aspect ratio. All-nanowire solar cells comprising a polymer nanowire donor and a small-molecule nanowire acceptor were found to have enhanced photovoltaic efficiency. The use of a processing additive was found to give optimum device performance in benzobisthiazole-based donor-acceptor copolymer/fullerene and poly(3-hexylthiophene)/non-fullerene photovoltaic blend systems. The performance of non-fullerene polymer solar cells was enhanced 10-fold by using only 0.2 vol% additive and the mechanism of enhancement in efficiency was explained in terms of the optimized nanoscale morphology. Scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy was successfully used for the first time to image the nanoscale morphology of all-polymer bulk heterojunction solar cells, demonstrating high spatial resolution with chemical specificity.

Book Plasmonic Organic Solar Cells

Download or read book Plasmonic Organic Solar Cells written by Bo Wu and published by Springer. This book was released on 2016-10-04 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the incorporation of plasmonic nanostructures into organic solar cells, which offers an attractive light trapping and absorption approach to enhance power conversion efficiencies. The authors review the latest advances in the field and discuss the characterization of these hybrid devices using a combination of optical and electrical probes. Transient optical spectroscopies such as transient absorption and transient photoluminescence spectroscopy offer powerful tools for observing charge carrier dynamics in plasmonic organic solar cells. In conjunction with device electrical characterizations, they provide unambiguous proof of the effect of the plasmonic nanostructures on the solar cells’ performance. However, there have been a number of controversies over the effects of such integration – where both enhanced and decreased performance have been reported. Importantly, the new insights into the photophysics and charge dynamics of plasmonic organic solar cells that these spectroscopy methods yield could be used to resolve these controversies and provide clear guidelines for device design and fabrication.

Book Molecular Structures and Device Properties of Organic Solar Cells

Download or read book Molecular Structures and Device Properties of Organic Solar Cells written by Zhenghao Mao and published by . This book was released on 2014 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells (OSCs), consisted of carbon-based organic semiconductors, either polymers or small molecules, have recently attracted the attention of both academic and industry due to their unique properties such as easy processing, flexibility and scalability. One major limitation toward commercialization is the low power conversion efficiency (PCE) compared to inorganic solar cells. Thus, much research in this field is focused on improving the efficiency. A better understanding to the relationship between the properties of organic semiconductors and the solar device performance is required. In this thesis, perfluorinated-end modified poly(3-hexylthiophene), core-substituted naphthalene diimide, and Zn (II) complexes with azadipyrromethene were investigated. Their properties and applications in organic photovolatic (OPV) are discussed.Previous studies suggested that end-group modification of P3HT affects device efficiency, and that some fluorine in the end group slightly improve the efficiency. In order to further understand how perfluorinated end-groups affect device performance of blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl) propyl-1-phenyl [6, 6] C61 (PCBM), we synthesized a series of well-defined P3HT with differing perfluoroalkyl length by Stille coupling of the bromine end of P3HT and stannylated 2-perfluoroalkylthiophene. The reactions occurred quantitatively, confirmed by 1H and 19F NMR spectroscopy, and by MALDI-ToF mass spectroscopy. Electron filtering transmission electron microscopy (EF-TEM) revealed that the polymer/PCBM phase separate on the nanoscale. However, solar cells of the modified P3HTs with PCBM had a lower power conversion efficiency than that of un-modified P3HT:PCBM, suggesting that perfluoroalkyl end-groups are detrimental to solar cell performance.The performance of solution-processed organic photovoltaic is seriously limited by the absorption and energy tuning potential of fullerene-based electron acceptors. Overcoming these limitations requires the development of non-fullerene acceptors. Core-substituted naphthalene diimides (cNDI) are good candidates as non-fullerene acceptors for organic photovoltaic, because they have high electron affinity, excellent electron transport properties, and tunable energy levels. We synthesized several cNDIs with different imide core substituents and different alkylamino substituents (RF1-6). Their optical and electrochemical properties and OPV device properties as electron acceptors were studied. Particularly, RF1 was investigated as electron accepting material for optimization of solar cells. The LUMO energy level of RF1 is -3.7 eV, higher than PCBM (-4.0 eV); correspondingly, a high Voc (~1 V) can be reached from blends of P3HT and RF1. The power conversion efficiency improves from 0.31% (as-casted) or 0.48% (pre-annealed) to 0.96% with a processing 1,8-diiodooctane(DIO) additive at an optimum concentration of 0.2 vol%. The results are explained by changes in morphology observed by atomic force microscopy (AFM) and transmitting electron microscopy (TEM) images. Charge transport properties were estimated by space-charge limited current (SCLC) model, indicating that the electron mobility determines the OSC performance.One reason why efficiency of non-fullerene based solar cell have been relatively low is partly because non-fullerene acceptors are often planar and tend to form unfavorable phase-separated domains when blended with typical donors. We synthesized and characterized a series of new solution-processable azadipyromethene-based complexes, Zn(WS1-5)2. These new complexes have high electron affinity and strong accepting properties, and behave as good electron acceptors in organic solar cells. The best device performance was obtained from Zn(WS3)2 acceptor. The 3D nature of this acceptor prevents crystallization and promotes a favorable nanoscale morphology to give a high PCE of 4.10%. The acceptor also significantly contributed to photocurrent generation by harvesting light between 600 nm and 800 nm. These results demonstrate a new paradigm to designing acceptors with tunable properties that can overcome the limitations of fullerenes.