Download or read book Explainable Artificial Intelligence XAI in Manufacturing written by Tin-Chih Toly Chen and published by Springer Nature. This book was released on 2023-03-16 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the latest developments in Explainable AI (XAI) and its applications in manufacturing. It covers the various methods, tools, and technologies that are being used to make AI more understandable and communicable for factory workers. With the increasing use of AI in manufacturing, there is a growing need to address the limitations of advanced AI methods that are difficult to understand or explain to those without a background in AI. This book addresses this need by providing a systematic review of the latest research and advancements in XAI specifically tailored for the manufacturing industry. The book includes real-world case studies and examples to illustrate the practical applications of XAI in manufacturing. It is a valuable resource for researchers, engineers, and practitioners working in the field of AI and manufacturing.
Download or read book Deep Learning in Gaming and Animations written by Moolchand Sharma and published by CRC Press. This book was released on 2024-10-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text discusses the core concepts and principles of deep learning in gaming and animation with applications in a single volume. It will be a useful reference text for graduate students, and professionals in diverse areas such as electrical engineering, electronics and communication engineering, computer science, gaming and animation.
Download or read book Explainable Artificial Intelligence XAI in Manufacturing written by Tin-Chih Toly Chen and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the latest developments in Explainable AI (XAI) and its applications in manufacturing. It covers the various methods, tools, and technologies that are being used to make AI more understandable and communicable for factory workers. With the increasing use of AI in manufacturing, there is a growing need to address the limitations of advanced AI methods that are difficult to understand or explain to those without a background in AI. This book addresses this need by providing a systematic review of the latest research and advancements in XAI specifically tailored for the manufacturing industry. The book includes real-world case studies and examples to illustrate the practical applications of XAI in manufacturing. It is a valuable resource for researchers, engineers, and practitioners working in the field of AI and manufacturing.
Download or read book Explainable AI Interpreting Explaining and Visualizing Deep Learning written by Wojciech Samek and published by Springer Nature. This book was released on 2019-09-10 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Download or read book Explainable Artificial Intelligence written by Luca Longo and published by Springer Nature. This book was released on 2023-12-05 with total page 711 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume set constitutes the refereed proceedings of the First World Conference on Explainable Artificial Intelligence, xAI 2023, held in Lisbon, Portugal, in July 2023. The 94 papers presented were thoroughly reviewed and selected from the 220 qualified submissions. They are organized in the following topical sections: Part I: Interdisciplinary perspectives, approaches and strategies for xAI; Model-agnostic explanations, methods and techniques for xAI, Causality and Explainable AI; Explainable AI in Finance, cybersecurity, health-care and biomedicine. Part II: Surveys, benchmarks, visual representations and applications for xAI; xAI for decision-making and human-AI collaboration, for Machine Learning on Graphs with Ontologies and Graph Neural Networks; Actionable eXplainable AI, Semantics and explainability, and Explanations for Advice-Giving Systems. Part III: xAI for time series and Natural Language Processing; Human-centered explanations and xAI for Trustworthy and Responsible AI; Explainable and Interpretable AI with Argumentation, Representational Learning and concept extraction for xAI.
Download or read book Hands On Explainable AI XAI with Python written by Denis Rothman and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Resolve the black box models in your AI applications to make them fair, trustworthy, and secure. Familiarize yourself with the basic principles and tools to deploy Explainable AI (XAI) into your apps and reporting interfaces. Key FeaturesLearn explainable AI tools and techniques to process trustworthy AI resultsUnderstand how to detect, handle, and avoid common issues with AI ethics and biasIntegrate fair AI into popular apps and reporting tools to deliver business value using Python and associated toolsBook Description Effectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex. Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications. You will build XAI solutions in Python, TensorFlow 2, Google Cloud’s XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle. You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces. By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI. What you will learnPlan for XAI through the different stages of the machine learning life cycleEstimate the strengths and weaknesses of popular open-source XAI applicationsExamine how to detect and handle bias issues in machine learning dataReview ethics considerations and tools to address common problems in machine learning dataShare XAI design and visualization best practicesIntegrate explainable AI results using Python modelsUse XAI toolkits for Python in machine learning life cycles to solve business problemsWho this book is for This book is not an introduction to Python programming or machine learning concepts. You must have some foundational knowledge and/or experience with machine learning libraries such as scikit-learn to make the most out of this book. Some of the potential readers of this book include: Professionals who already use Python for as data science, machine learning, research, and analysisData analysts and data scientists who want an introduction into explainable AI tools and techniquesAI Project managers who must face the contractual and legal obligations of AI Explainability for the acceptance phase of their applications
Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Download or read book Explainable Ambient Intelligence XAmI written by Tin-Chih Toly Chen and published by Springer Nature. This book was released on with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Explanatory Model Analysis written by Przemyslaw Biecek and published by CRC Press. This book was released on 2021-02-15 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.
Download or read book Artificial Intelligence for Solar Photovoltaic Systems written by Bhavnesh Kumar and published by CRC Press. This book was released on 2022-07-29 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a clear explanation of how to apply artificial intelligence (AI) to solve the challenges in solar photovoltaic technology. It introduces readers to new AI-based approaches and technologies that help manage and operate solar photovoltaic systems effectively. It also motivates readers to find new AI-based solutions for these challenges by providing a comprehensive collection of findings on AI techniques. It covers important topics including solar irradiance variability, solar power forecasting, solar irradiance forecasting, maximum power point tracking, hybrid algorithms, swarm optimization, evolutionary optimization, sensor-based sun- tracking systems, single-axis and dual-axis sun-tracking systems, smart metering, frequency regulation using AI, emerging multilevel inverter topologies, and voltage and reactive power control using AI. This book is useful for senior undergraduate students, graduate students, and academic researchers in areas such as electrical engineering, electronics and communication engineering, computer science, and renewable energy.
Download or read book Artificial Intelligence for Smart Manufacturing written by Kim Phuc Tran and published by Springer Nature. This book was released on 2023-06-01 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a comprehensive overview of the latest developments in the field of smart manufacturing, exploring theoretical research, technological advancements, and practical applications of AI approaches. With Industry 4.0 paving the way for intelligent systems and innovative technologies to enhance productivity and quality, the transition to Industry 5.0 has introduced a new concept known as augmented intelligence (AuI), combining artificial intelligence (AI) with human intelligence (HI). As the demand for smart manufacturing continues to grow, this book serves as a valuable resource for professionals and practitioners looking to stay up-to-date with the latest advancements in Industry 5.0. Covering a range of important topics such as product design, predictive maintenance, quality control, digital twin, wearable technology, quantum, and machine learning, the book also features insightful case studies that demonstrate the practical application of these tools in real-world scenarios. Overall, this book provides a comprehensive and up-to-date account of the latest advancements in smart manufacturing, offering readers a valuable resource for navigating the challenges and opportunities presented by Industry 5.0.
Download or read book Sustainable Smart Healthcare written by Tin-Chih Toly Chen and published by Springer Nature. This book was released on 2023 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how smart technology applications to mobile healthcare will be different in the post-pandemic era. Prior to the Covid-19 pandemic, smart technologies had been widely applied to mobile health care. It will be the same in the post pandemic. However, the widely used smart technologies before and after the Covid-19 pandemic may be different. First, users' motivations for applying smart technologies have changed. In addition, some innovative ways of applying smart technologies within the Covid-19 pandemic have emerged. Further, users' acceptance of smart technology applications has increased. Furthermore, new smart technologies are still being proposed. This book discusses these topics.
Download or read book Artificial Intelligence Solutions for Cyber Physical Systems written by Pushan Kumar Dutta and published by CRC Press. This book was released on 2024-09-16 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smart manufacturing environments are revolutionizing the industrial sector by integrating advanced technologies, such as the Internet of Things (IoT), artificial intelligence (AI), and robotics, to achieve higher levels of efficiency, productivity, and safety. However, the increasing complexity and interconnectedness of these systems also introduce new security challenges that must be addressed to ensure the safety of human workers and the integrity of manufacturing processes. Key topics include risk assessment methodologies, secure communication protocols, and the development of standard specifications to guide the design and implementation of HCPS. Recent research highlights the importance of adopting a multi-layered approach to security, encompassing physical, network, and application layers. Furthermore, the integration of AI and machine learning techniques enables real-time monitoring and analysis of system vulnerabilities, as well as the development of adaptive security measures. Artificial Intelligence Solutions for Cyber-Physical Systems discusses such best practices and frameworks as NIST Cybersecurity Framework, ISO/IEC 27001, and IEC 62443 of advanced technologies. It presents strategies and methods to mitigate risks and enhance security, including cybersecurity frameworks, secure communication protocols, and access control measures. The book also focuses on the design, implementation, and management of secure HCPS in smart manufacturing environments. It covers a wide range of topics, including risk assessment, security architecture, data privacy, and standard specifications, for HCPS. The book highlights the importance of securing communication protocols, the role of artificial intelligence and machine learning in threat detection and mitigation, and the need for robust cybersecurity frameworks in the context of smart manufacturing.
Download or read book Topics in Artificial Intelligence Applied to Industry 4 0 written by Mahmoud Ragab AL-Refaey and published by John Wiley & Sons. This book was released on 2024-03-28 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in Artificial Intelligence Applied to Industry 4.0 Forward thinking resource discussing emerging AI and IoT technologies and how they are applied to Industry 4.0 Topics in Artificial Intelligence Applied to Industry 4.0 discusses the design principles, technologies, and applications of emerging AI and IoT solutions on Industry 4.0, explaining how to make improvements in infrastructure through emerging technologies. Providing a clear connection with different technologies such as IoT, Big Data, AR and VR, and Blockchain, this book presents security, privacy, trust, and other issues whilst delving into real-world problems and case studies. The text takes a highly practical approach, with a clear insight on how readers can increase productivity by drastically shortening the time period between the development of a new product and its delivery to customers in the market by 50%. This book also discusses how to save energy across systems to ensure competitiveness in a global market, and become more responsive in how they produce products and services for their consumers, such as by investing in flexible production lines. Written by highly qualified authors, Topics in Artificial Intelligence Applied to Industry 4.0 explores sample topics such as: Quantum machine learning, neural network implementation, and cloud and data analytics for effective analysis of industrial data Computer vision, emerging networking technologies, industrial data spaces, and an industry vision for 2030 in both developing and developed nations Novel or improved nature-inspired optimization algorithms in enhancing Industry 5.0 and the connectivity of any components for smart environment Future professions in agriculture, medicine, education, fitness, R&D, and transport and communication as a result of new technologies Aimed at researchers and students in the interdisciplinary fields of Smart Manufacturing and Smart Applications, Topics in Artificial Intelligence Applied to Industry 4.0 provides the perfect overview of technology from the perspective of modern society and operational environment.
Download or read book Advances in Production Management Systems Towards Smart and Digital Manufacturing written by Bojan Lalic and published by Springer Nature. This book was released on 2020-08-25 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set IFIP AICT 591 and 592 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2020, held in Novi Sad, Serbia, in August/September 2020. The 164 papers presented were carefully reviewed and selected from 199 submissions. They discuss globally pressing issues in smart manufacturing, operations management, supply chain management, and Industry 4.0. The papers are organized in the following topical sections: Part I: advanced modelling, simulation and data analytics in production and supply networks; advanced, digital and smart manufacturing; digital and virtual quality management systems; cloud-manufacturing; cyber-physical production systems and digital twins; IIOT interoperability; supply chain planning and optimization; digital and smart supply chain management; intelligent logistics networks management; artificial intelligence and blockchain technologies in logistics and DSN; novel production planning and control approaches; machine learning and artificial intelligence; connected, smart factories of the future; manufacturing systems engineering: agile, flexible, reconfigurable; digital assistance systems: augmented reality and virtual reality; circular products design and engineering; circular, green, sustainable manufacturing; environmental and social lifecycle assessments; socio-cultural aspects in production systems; data-driven manufacturing and services operations management; product-service systems in DSN; and collaborative design and engineering Part II: the Operator 4.0: new physical and cognitive evolutionary paths; digital transformation approaches in production management; digital transformation for more sustainable supply chains; data-driven applications in smart manufacturing and logistics systems; data-driven services: characteristics, trends and applications; the future of lean thinking and practice; digital lean manufacturing and its emerging practices; new reconfigurable, flexible or agile production systems in the era of industry 4.0; operations management in engineer-to-order manufacturing; production management in food supply chains; gastronomic service system design; product and asset life cycle management in the circular economy; and production ramp-up strategies for product
Download or read book Deep Learning Reinforcement Learning and the Rise of Intelligent Systems written by Uddin, M. Irfan and published by IGI Global. This book was released on 2024-02-26 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: The applications of rapidly advancing intelligent systems are so varied that many are still yet to be discovered. There is often a disconnect between experts in computer science, artificial intelligence, machine learning, robotics, and other specialties, which inhibits the potential for the expansion of this technology and its many benefits. A resource that encourages interdisciplinary collaboration is needed to bridge the gap between these respected leaders of their own fields. Deep Learning, Reinforcement Learning, and the Rise of Intelligent Systems represents an exploration of the forefront of artificial intelligence, navigating the complexities of this field and its many applications. This guide expertly navigates through the intricate domains of deep learning and reinforcement learning, offering an in-depth journey through foundational principles, advanced methodologies, and cutting-edge algorithms shaping the trajectory of intelligent systems. The book covers an introduction to artificial intelligence and its subfields, foundational aspects of deep learning, a demystification of the architecture of neural networks, the mechanics of backpropagation, and the intricacies of critical elements such as activation and loss functions. The book serves as a valuable educational resource for professionals. Its structured approach makes it an ideal reference for students, researchers, and industry professionals.
Download or read book Advances in Production Management Systems Smart Manufacturing and Logistics Systems Turning Ideas into Action written by Duck Young Kim and published by Springer Nature. This book was released on 2022-09-18 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set, IFIP AICT 663 and 664, constitutes the thoroughly refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2022, held in Gyeongju, South Korea in September 2022. The 139 full papers presented in these volumes were carefully reviewed and selected from a total of 153 submissions. The papers of APMS 2022 are organized into two parts. The topics of special interest in the first part included: AI & Data-driven Production Management; Smart Manufacturing & Industry 4.0; Simulation & Model-driven Production Management; Service Systems Design, Engineering & Management; Industrial Digital Transformation; Sustainable Production Management; and Digital Supply Networks. The second part included the following subjects: Development of Circular Business Solutions and Product-Service Systems through Digital Twins; “Farm-to-Fork” Production Management in Food Supply Chains; Urban Mobility and City Logistics; Digital Transformation Approaches in Production Management; Smart Supply Chain and Production in Society 5.0 Era; Service and Operations Management in the Context of Digitally-enabled Product-Service Systems; Sustainable and Digital Servitization; Manufacturing Models and Practices for Eco-Efficient, Circular and Regenerative Industrial Systems; Cognitive and Autonomous AI in Manufacturing and Supply Chains; Operators 4.0 and Human-Technology Integration in Smart Manufacturing and Logistics Environments; Cyber-Physical Systems for Smart Assembly and Logistics in Automotive Industry; and Trends, Challenges and Applications of Digital Lean Paradigm.