EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Experimental Study of Self trapping in Capillary Discharge Guided Laser Wakefield Acceleration

Download or read book Experimental Study of Self trapping in Capillary Discharge Guided Laser Wakefield Acceleration written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser wakefield acceleration experiments were carried out using hydrogen-filled capillary discharge waveguides. For a 33 mm long, 300 mu m capillary, parameter regimes with high energy electron beams (up to 1 GeV) and stable 0.5 GeV were found. In the high energy regime, the electron beam peak energy was correlated with the number of trapped electrons. For a 15 mm long, 200 mu m diameter capillary, quasi-monoenergetic e beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized.

Book Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

Download or read book Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL written by and published by . This book was released on 2009 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser wakefield acceleration experiments were carried out by using a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 micrometer diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 micrometer capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

Book Plasma Channel Guided Laser Wakefield Accelerator

Download or read book Plasma Channel Guided Laser Wakefield Accelerator written by Cameron Guy Robinson Geddes and published by . This book was released on 2005 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book LASER WAKEFIELD ACCELERATION DRIVEN BY ATF CO2 LASER  STELLA LW

Download or read book LASER WAKEFIELD ACCELERATION DRIVEN BY ATF CO2 LASER STELLA LW written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A new experiment has begun that builds upon the successful Staged Electron Laser Acceleration (STELLA) experiment, which demonstrated high-trapping efficiency and narrow energy spread in a staged laser-driven accelerator. STELLA was based upon inverse free electron lasers (IFEL); the new experiment, called STELLA-LW, is based upon laser wakefield acceleration (LWFA). The first phase of STELLA-LW will be to demonstrate LWFA in a capillary discharge driven by the Brookhaven National Laboratory Accelerator Test Facility (ATF) terawatt CO[sub 2] laser beam. This will be the first time LWFA is conducted at 10.6-[micro]m laser wavelength. It will also be operating in an interesting pseudo-resonant regime where the laser pulse length is too long for resonant LWFA, but too short for self-modulated LWFA. Analysis has shown that in pseudo-resonant LWFA, pulse-steepening effects occur on the laser pulse that permits generation of strong wakefields. Various approaches are being explored for the capillary discharge including polypropylene and hydrogen-filled capillaries. Planned diagnostics for the experiment include coherent Thomson scattering (CTS) to detect the wakefield generation. This will be one of the first times CTS is used on a capillary discharge.

Book Investigation of Staged Laser Plasma Acceleration

Download or read book Investigation of Staged Laser Plasma Acceleration written by Satomi Shiraishi and published by Springer. This book was released on 2014-07-10 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis establishes an exciting new beginning for Laser Plasma Accelerators (LPAs) to further develop toward the next generation of compact high energy accelerators. Design, installation and commissioning of a new experimental setup at LBNL played an important role and are detailed through three critical components: e-beam production, reflection of laser pulses with a plasma mirror and large wake excitation below electron injection threshold. Pulses from a 40 TW peak power laser system were split into a 25 TW pulse and a 15 TW pulse. The first pulse was used for e-beam production in the first module and the second pulse was used for wake excitation in the second module to post-accelerate the e-beam. As a result, reliable e-beam production and efficient wake excitation necessary for the staged acceleration were independently demonstrated. These experiments have laid the foundation for future staging experiments at the 40 TW peak power level.

Book Studies of Proton Driven Plasma Wakefield Acceleration

Download or read book Studies of Proton Driven Plasma Wakefield Acceleration written by Yangmei Li and published by Springer Nature. This book was released on 2020-07-15 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on a cutting-edge area of research, which is aligned with CERN's mainstream research, the "AWAKE" project, dedicated to proving the capability of accelerating particles to the energy frontier by the high energy proton beam. The author participated in this project and has advanced the plasma wakefield theory and modelling significantly, especially concerning future plasma acceleration based collider design. The thesis addresses electron beam acceleration to high energy whilst preserving its high quality driven by a single short proton bunch in hollow plasma. It also demonstrates stable deceleration of multiple proton bunches in a nonlinear regime with strong resonant wakefield excitation in hollow plasma, and generation of high energy and high quality electron or positron bunches. Further work includes the assessment of transverse instabilities induced by misaligned beams in hollow plasma and enhancement of the wakefield amplitude driven by a self-modulated long proton bunch with a tapered plasma. This work has major potential to impact the next generation of linear colliders and also in the long-term may help develop compact accelerators for use in industrial and medical facilities.

Book Beam Acceleration In Crystals And Nanostructures   Proceedings Of The Workshop

Download or read book Beam Acceleration In Crystals And Nanostructures Proceedings Of The Workshop written by Mourou Gerard and published by World Scientific. This book was released on 2020-02-18 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advancements in generation of intense X-ray laser ultrashort pulses open opportunities for particle acceleration in solid-state plasmas. Wakefield acceleration in crystals or carbon nanotubes shows promise of unmatched ultra-high accelerating gradients and possibility to shape the future of high energy physics colliders. This book summarizes the discussions of the 'Workshop on Beam Acceleration in Crystals and Nanostructures' (Fermilab, June 24-25 , 2019), presents next steps in theory and modeling and outlines major physics and technology challenges toward proof-of-principle demonstration experiments.

Book Challenges and Goals for Accelerators in the XXI Century

Download or read book Challenges and Goals for Accelerators in the XXI Century written by Oliver Brning and published by World Scientific. This book was released on 2015 with total page 855 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The past 100 years of accelerator-based research have led the field from first insights into the structure of atoms to the development and confirmation of the Standard Model of physics. Accelerators have been a key tool in developing our understanding of the elementary particles and the forces that govern their interactions. This book describes the past 100 years of accelerator development with a special focus on the technological advancements in the field, the connection of the various accelerator projects to key developments and discoveries in the Standard Model, how accelerator technologies open the door to other applications in medicine and industry, and finally presents an outlook of future accelerator projects for the coming decades."--Provided by publisher.

Book Advanced Accelerator Concepts

Download or read book Advanced Accelerator Concepts written by Vitaly Yakimenko and published by American Institute of Physics. This book was released on 2004-12-14 with total page 1056 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings cover new developments for a number of the most advanced methods for acceleration of heavy ions, protons, electrons and positrons.

Book Experimental Studies of Laser Plasma Wakefield Acceleration

Download or read book Experimental Studies of Laser Plasma Wakefield Acceleration written by Constantin Aniculaesei and published by . This book was released on 2015 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis describes experiments that explore the possibility of improving the quality of an electron beam obtained from a laser wakefield accelerator (LWFA) by shaping the longitudinal plasma density profile. Different density profiles have been obtained by employing a range of Laval nozzles with different geometries. These are modelled and numerically simulated under different conditions using Fluent 6.3. Density lineouts from simulations for different heights above the nozzle give the plasma density profile for each experimental condition. The plasma density profile is modified by changing the geometry of the nozzle, the interaction point, the laser beam angle relative to the exit plane of the nozzle and pressure of the gas. In this way the leading up-ramp length of the density profile (that interacts first with the laser) has been varied between 0.47 mm to 1.39 mm and the maximum plasma density varied between 1.29 x 1019 cm−3 to 2.03 x 1019 cm−3. The influence of the density profile parameters on the LWFA process is quantified by monitoring the properties of the generated electron beam. It is shown that the leading ramp of the plasma density profile i.e. the ramp that interacts first with the laser, has a strong influence on the quality of the electron beam. Density profiles with the same peak plasma density but different ramp lengths generate electron beams with a factor of 1.4 difference in charge, 1.1 in electron energy, 2 in pointing and 1.45 in energy spread. Longer ramp lengths enhance the quality of electron beams, which suggest that LWFA injection occurs at the entrance density ramp. Complex density profiles are produced by tilting the nozzle relative to the direction of propagation of the laser. This allows continuous tuning of the peak energy of the electron beam from 135 ± 2MeV up to 171 ± 2MeV. The electron beam energy spread show improvements from 20.7 ± 1.2% to 8.9 ± 0.9%. The charge closely follows the evolution of the energy spread and has a mean value of 0.61 ± 0.16 pC. Experimental results also show that the angular distribution of the electron beam becomes elliptical when the laser focal plane is moved from the edge of the gas jet towards the centre of the density profile. This result is linked to the existence of a distorted LWFA bubble that propagates off-axis therefore affecting the pointing and transverse shape of the electron beam.

Book Laser Wakefield Electron Acceleration

Download or read book Laser Wakefield Electron Acceleration written by Karl Schmid and published by Springer Science & Business Media. This book was released on 2011-05-18 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams.

Book Performance of Capillary Discharge Guided Laser Plasma Wakefieldaccelerator

Download or read book Performance of Capillary Discharge Guided Laser Plasma Wakefieldaccelerator written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A GeV-class laser-driven plasma-based wakefield acceleratorhas been realized at the Lawrence Berkeley National Laboratory (LBNL). The device consists of the 40TW high repetition rate Ti:sapphire LOASISlaser system at LBNL and a gas-filled capillary discharge waveguidedeveloped at Oxford University. The operation of the capillary dischargeguided laser plasma wakefield accelerator with a capillaryof 225 mu mdiameter and 33 mm in length was analyzed in detail. The input intensitydependence suggests that excessive self-injection causes increased beamloading leading to broadband lower energy electron beam generation. Thetrigger versus laser arrival timing dependence suggests that the plasmachannel parameters can be tuned to reduce beam divergence.

Book LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION

Download or read book LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION written by and published by . This book was released on 2011 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: A series of laser wake field accelerator experiments leading to electron energy exceeding 1 GeV are described. Theoretical concepts and experimental methods developed while conducting experiments using the 10 TW Ti:Sapphire laser at UCLA were implemented and transferred successfully to the 100 TW Callisto Laser System at the Jupiter Laser Facility at LLNL. To reach electron energies greater than 1 GeV with current laser systems, it is necessary to inject and trap electrons into the wake and to guide the laser for more than 1 cm of plasma. Using the 10 TW laser, the physics of self-guiding and the limitations in regards to pump depletion over cm-scale plasmas were demonstrated. Furthermore, a novel injection mechanism was explored which allows injection by ionization at conditions necessary for generating electron energies greater than a GeV. The 10 TW results were followed by self-guiding at the 100 TW scale over cm plasma lengths. The energy of the self-injected electrons, at 3 x 1018 cm−3 plasma density, was limited by dephasing to 720 MeV. Implementation of ionization injection allowed extending the acceleration well beyond a centimeter and 1.4 GeV electrons were measured.

Book Direct Laser Acceleration in Laser Wakefield Accelerators

Download or read book Direct Laser Acceleration in Laser Wakefield Accelerators written by Jessica Shaw and published by . This book was released on 2016 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, the direct laser acceleration (DLA) of ionization-injected electrons in a laser wakefield accelerator (LWFA) operating in the quasi-blowout regime has been investigated through experiment and simulation. In the blowout regime of LWFA, the radiation pressure of an intense laser pulse can push a majority of the plasma electrons out and around the main body of the pulse. The expelled plasma electrons feel the electrostatic field of the relatively-stationary ions and are thus attracted back towards the laser axis behind the laser pulse where they overshoot the axis and set up a wake oscillation. When ionization injection is used, the inner-shell electrons of higher-Z dopant atoms are tunnel ionized near the peak of the laser pulse. Those electrons slip back relative to the wake until they gain enough energy from the longitudinal wakefield to become trapped. Those electrons that are trapped off-axis will undergo betatron oscillations in response to the linear transverse focusing force of the ions. Through experiments and supporting simulations, this dissertation demonstrates that when there is a significant overlap between the drive laser and the trapped electrons in a LWFA cavity, the accelerating electrons can gain energy from the DLA mechanism in addition to LWFA. When laser pulse overlaps the trapped electrons, the betatron oscillations of the electrons in the plane of the laser polarization can lead to an energy transfer from the transverse electric field of the laser to the transverse momentum of the electrons. This enhanced transverse momentum can then be converted into increased longitudinal momentum via the v x B force of the laser. This process is known as DLA. In this experimental work, the properties of the electron beams produced in a LWFA where the electrons are injected by ionization injection and become trapped without escaping the laser field have been investigated. The maximum measured energy of the produced electron beams scales with the overlap between the electrons and the laser. Undispersed electrons beams are observed to be elliptical in the plane of the laser polarization, and the energy spectrum splits into a fork at higher energies when the electrons beams are dispersed orthogonal to the direction of the laser polarization. These characteristic features are reproduced in particle-in-cell (PIC) code simulations where particle tracking was used to demonstrate that such spectral features are signatures of the presence of DLA in LWFA. Further PIC simulations comparing LWFA with and without DLA show that the presence of DLA can lead to electron beams that have maximum energies that exceed the estimates given by the theory for the ideal blowout regime. The magnitude of the contribution of DLA to the energy gained by the electron was found to be on the order of the LWFA contribution. In the LWFAs studied here, both DLA and LWFA participate in accelerating the bulk of the electrons in the produced electron beam. The presence of DLA in a LWFA can also lead to enhanced betatron oscillation amplitudes and increased divergence in the direction of the laser polarization.