EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Experimental Introduction to Number Theory

Download or read book An Experimental Introduction to Number Theory written by Benjamin Hutz and published by American Mathematical Soc.. This book was released on 2018-04-17 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents material suitable for an undergraduate course in elementary number theory from a computational perspective. It seeks to not only introduce students to the standard topics in elementary number theory, such as prime factorization and modular arithmetic, but also to develop their ability to formulate and test precise conjectures from experimental data. Each topic is motivated by a question to be answered, followed by some experimental data, and, finally, the statement and proof of a theorem. There are numerous opportunities throughout the chapters and exercises for the students to engage in (guided) open-ended exploration. At the end of a course using this book, the students will understand how mathematics is developed from asking questions to gathering data to formulating and proving theorems. The mathematical prerequisites for this book are few. Early chapters contain topics such as integer divisibility, modular arithmetic, and applications to cryptography, while later chapters contain more specialized topics, such as Diophantine approximation, number theory of dynamical systems, and number theory with polynomials. Students of all levels will be drawn in by the patterns and relationships of number theory uncovered through data driven exploration.

Book Experimental Number Theory

    Book Details:
  • Author : Fernando Rodriguez Villegas
  • Publisher : Oxford University Press, USA
  • Release : 2007-05-24
  • ISBN : 0198528221
  • Pages : 231 pages

Download or read book Experimental Number Theory written by Fernando Rodriguez Villegas and published by Oxford University Press, USA. This book was released on 2007-05-24 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate text shows how the computer can be used as a tool for research in number theory through numerical experimentation. Examples of experiments in binary quadratic forms, zeta functions of varieties over finite fields, elementary class field theory, elliptic units, modular forms, are provided along with exercises and selected solutions.

Book Number Theory for Computing

Download or read book Number Theory for Computing written by Song Y. Yan and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a good introduction to the classical elementary number theory and the modern algorithmic number theory, and their applications in computing and information technology, including computer systems design, cryptography and network security. In this second edition proofs of many theorems have been provided, further additions and corrections were made.

Book Algorithmic Algebraic Number Theory

Download or read book Algorithmic Algebraic Number Theory written by M. Pohst and published by Cambridge University Press. This book was released on 1997-09-25 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in paperback, this classic book is addresssed to all lovers of number theory. On the one hand, it gives a comprehensive introduction to constructive algebraic number theory, and is therefore especially suited as a textbook for a course on that subject. On the other hand many parts go beyond an introduction an make the user familliar with recent research in the field. For experimental number theoreticians new methods are developed and new results are obtained which are of great importance for them. Both computer scientists interested in higher arithmetic and those teaching algebraic number theory will find the book of value.

Book Experimental Mathematics

Download or read book Experimental Mathematics written by V. I. Arnold and published by American Mathematical Soc.. This book was released on 2015-07-14 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the traditional ways mathematical ideas and even new areas of mathematics are created is from experiments. One of the best-known examples is that of the Fermat hypothesis, which was conjectured by Fermat in his attempts to find integer solutions for the famous Fermat equation. This hypothesis led to the creation of a whole field of knowledge, but it was proved only after several hundred years. This book, based on the author's lectures, presents several new directions of mathematical research. All of these directions are based on numerical experiments conducted by the author, which led to new hypotheses that currently remain open, i.e., are neither proved nor disproved. The hypotheses range from geometry and topology (statistics of plane curves and smooth functions) to combinatorics (combinatorial complexity and random permutations) to algebra and number theory (continuous fractions and Galois groups). For each subject, the author describes the problem and presents numerical results that led him to a particular conjecture. In the majority of cases there is an indication of how the readers can approach the formulated conjectures (at least by conducting more numerical experiments). Written in Arnold's unique style, the book is intended for a wide range of mathematicians, from high school students interested in exploring unusual areas of mathematics on their own, to college and graduate students, to researchers interested in gaining a new, somewhat nontraditional perspective on doing mathematics. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).

Book Number Theoretic Methods in Statistics

Download or read book Number Theoretic Methods in Statistics written by Kai-Tai Fang and published by CRC Press. This book was released on 1993-12-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a survey of recent work on the application of number theory in statistics. The essence of number-theoretic methods is to find a set of points that are universally scattered over an s-dimensional unit cube. In certain circumstances this set can be used instead of random numbers in the Monte Carlo method. The idea can also be applied to other problems such as in experimental design. This book will illustrate the idea of number-theoretic methods and their application in statistics. The emphasis is on applying the methods to practical problems so only part-proofs of theorems are given.

Book Numbers and Functions

    Book Details:
  • Author : Victor H. Moll
  • Publisher : American Mathematical Soc.
  • Release : 2012
  • ISBN : 0821887955
  • Pages : 530 pages

Download or read book Numbers and Functions written by Victor H. Moll and published by American Mathematical Soc.. This book was released on 2012 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: New mathematics often comes about by probing what is already known. Mathematicians will change the parameters in a familiar calculation or explore the essential ingredients of a classic proof. Almost magically, new ideas emerge from this process. This book examines elementary functions, such as those encountered in calculus courses, from this point of view of experimental mathematics. The focus is on exploring the connections between these functions and topics in number theory and combinatorics. There is also an emphasis throughout the book on how current mathematical software can be used to discover and interesting properties of these functions. The book provides a transition between elementary mathematics and more advanced topics, trying to make this transition as smooth as possible. Many topics occur in the book, but they are all part of a bigger picture of mathematics. By delving into a variety of them, the reader will develop this broad view. The large collection of problems is an essential part of the book. The problems vary from routine verifications of facts used in the text to the exploration of open questions. Book jacket.

Book Mathematics by Experiment

Download or read book Mathematics by Experiment written by Jonathan Borwein and published by CRC Press. This book was released on 2008-10-27 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and updated second edition maintains the content and spirit of the first edition and includes a new chapter, "Recent Experiences", that provides examples of experimental mathematics that have come to light since the publication of the first edition in 2003. For more examples and insights, Experimentation in Mathematics: Computational P

Book The Statistical Analysis of Experimental Data

Download or read book The Statistical Analysis of Experimental Data written by John Mandel and published by Courier Corporation. This book was released on 2012-06-08 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: First half of book presents fundamental mathematical definitions, concepts, and facts while remaining half deals with statistics primarily as an interpretive tool. Well-written text, numerous worked examples with step-by-step presentation. Includes 116 tables.

Book An Illustrated Theory of Numbers

Download or read book An Illustrated Theory of Numbers written by Martin H. Weissman and published by American Mathematical Soc.. This book was released on 2020-09-15 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.

Book Methods of Solving Number Theory Problems

Download or read book Methods of Solving Number Theory Problems written by Ellina Grigorieva and published by Birkhäuser. This book was released on 2018-07-06 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.

Book Algorithmic and Experimental Methods in Algebra  Geometry  and Number Theory

Download or read book Algorithmic and Experimental Methods in Algebra Geometry and Number Theory written by Gebhard Böckle and published by Springer. This book was released on 2018-03-22 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved. The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It offers a valuable resource for all researchers, from graduate students through established experts, who are interested in the computational aspects of algebra, geometry, and/or number theory.

Book Number Theory

    Book Details:
  • Author : W.A. Coppel
  • Publisher : Springer Science & Business Media
  • Release : 2006-02-02
  • ISBN : 9780387298511
  • Pages : 392 pages

Download or read book Number Theory written by W.A. Coppel and published by Springer Science & Business Media. This book was released on 2006-02-02 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume book is a modern introduction to the theory of numbers, emphasizing its connections with other branches of mathematics. Part A is accessible to first-year undergraduates and deals with elementary number theory. Part B is more advanced and gives the reader an idea of the scope of mathematics today. The connecting theme is the theory of numbers. By exploring its many connections with other branches a broad picture is obtained. The book contains a treasury of proofs, several of which are gems seldom seen in number theory books.

Book Experimental Mathematics in Action

Download or read book Experimental Mathematics in Action written by David Bailey and published by CRC Press. This book was released on 2007-05-31 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the continued advance of computing power and accessibility, the view that "real mathematicians don't compute" no longer has any traction for a newer generation of mathematicians. The goal in this book is to present a coherent variety of accessible examples of modern mathematics where intelligent computing plays a significant role and in so doi

Book An Adventurer s Guide to Number Theory

Download or read book An Adventurer s Guide to Number Theory written by Richard Friedberg and published by Courier Corporation. This book was released on 2012-07-06 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.

Book Number Theory and Physics

    Book Details:
  • Author : Jean-Marc Luck
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642754058
  • Pages : 324 pages

Download or read book Number Theory and Physics written by Jean-Marc Luck and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: 7 Les Houches Number theory, or arithmetic, sometimes referred to as the queen of mathematics, is often considered as the purest branch of mathematics. It also has the false repu tation of being without any application to other areas of knowledge. Nevertheless, throughout their history, physical and natural sciences have experienced numerous unexpected relationships to number theory. The book entitled Number Theory in Science and Communication, by M.R. Schroeder (Springer Series in Information Sciences, Vol. 7, 1984) provides plenty of examples of cross-fertilization between number theory and a large variety of scientific topics. The most recent developments of theoretical physics have involved more and more questions related to number theory, and in an increasingly direct way. This new trend is especially visible in two broad families of physical problems. The first class, dynamical systems and quasiperiodicity, includes classical and quantum chaos, the stability of orbits in dynamical systems, K.A.M. theory, and problems with "small denominators", as well as the study of incommensurate structures, aperiodic tilings, and quasicrystals. The second class, which includes the string theory of fundamental interactions, completely integrable models, and conformally invariant two-dimensional field theories, seems to involve modular forms and p adic numbers in a remarkable way.

Book Numerical Analysis

Download or read book Numerical Analysis written by Brian Sutton and published by SIAM. This book was released on 2019-04-18 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook develops the fundamental skills of numerical analysis: designing numerical methods, implementing them in computer code, and analyzing their accuracy and efficiency. A number of mathematical problems?interpolation, integration, linear systems, zero finding, and differential equations?are considered, and some of the most important methods for their solution are demonstrated and analyzed. Notable features of this book include the development of Chebyshev methods alongside more classical ones; a dual emphasis on theory and experimentation; the use of linear algebra to solve problems from analysis, which enables students to gain a greater appreciation for both subjects; and many examples and exercises. Numerical Analysis: Theory and Experiments is designed to be the primary text for a junior- or senior-level undergraduate course in numerical analysis for mathematics majors. Scientists and engineers interested in numerical methods, particularly those seeking an accessible introduction to Chebyshev methods, will also be interested in this book.