Download or read book Protein Folding Dynamics and Stability written by Prakash Saudagar and published by Springer Nature. This book was released on 2023-05-27 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes recent important advancements in protein folding dynamics and stability research, as well as explaining fundamentals and examining potential methodological approaches in protein science. In vitro, in silico, and in vivo method based research of how the stability and folding of proteins help regulate the cellular dynamics and impact cell function that are crucial in explaining various physiological and pathological processes. This book offers a comprehensive coverage on various techniques and related recent developments in the experimental and computational methods of protein folding, dynamics, and stability studies. The book is also structured in such a way as to summarize the latest developments in the fiddle and key concepts to ensure that readers can understand advanced concepts as well as the fundamental big picture. And most of all, fresh insights are provided into the convergence of protein science and technology. Protein Folding Dynamics and Stability is an ideal guide to the field that will be of value for all levels of researchers and advanced graduate students with training in biochemical laboratory research.
Download or read book Proteins written by David Whitford and published by John Wiley & Sons. This book was released on 2013-04-25 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proteins: Structure and Function is a comprehensive introduction to the study of proteins and their importance to modern biochemistry. Each chapter addresses the structure and function of proteins with a definitive theme designed to enhance student understanding. Opening with a brief historical overview of the subject the book moves on to discuss the ‘building blocks’ of proteins and their respective chemical and physical properties. Later chapters explore experimental and computational methods of comparing proteins, methods of protein purification and protein folding and stability. The latest developments in the field are included and key concepts introduced in a user-friendly way to ensure that students are able to grasp the essentials before moving on to more advanced study and analysis of proteins. An invaluable resource for students of Biochemistry, Molecular Biology, Medicine and Chemistry providing a modern approach to the subject of Proteins.
Download or read book Protein Misfolding written by Rossen Donev and published by Academic Press. This book was released on 2020-01-13 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Protein Misfolding, Volume 118, covers the wide spectrum of diseases and disorders that are attributed to protein misfolding, including degenerative and neurodegenerative, cardiovascular, renal, glaucoma, cancer, cystic fibrosis, Gaucher's disease, and many others. Specific chapters cover Mass spectrometric approaches for profiling protein folding and stability, Biomembranes, a key player in protein misfolding, how Genetic and environmental factors interact to disrupt proteostasis and trigger protein misfolding diseases, Formation of oligomers and large amorphous aggregates by intrinsically disordered proteins, Protein misfolding in ER stress with applications to cardiovascular and renal disease, and much more.
Download or read book Fuzziness written by Monika Fuxreiter and published by Springer Science & Business Media. This book was released on 2012-03-07 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed characterization of fuzzy interactions will be of central importance for understanding the diverse biological functions of intrinsically disordered proteins in complex eukaryotic signaling networks. In this volume, Peter Tompa and Monika Fuxreiter have assembled a series of papers that address the issue of fuzziness in molecular interactions. These papers provide a broad overview of the phenomenon of fuzziness and provide compelling examples of the central role played by fuzzy interactions in regulation of cellular signaling processes and in viral infectivity. These contributions summarize the current state of knowledge in this new field and will undoubtedly stimulate future research that will further advance our understanding of fuzziness and its role in biomolecular interactions.
Download or read book Free Energy Calculations written by Christophe Chipot and published by Springer Science & Business Media. This book was released on 2007-01-08 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Free energy constitutes the most important thermodynamic quantity to understand how chemical species recognize each other, associate or react. Examples of problems in which knowledge of the underlying free energy behaviour is required, include conformational equilibria and molecular association, partitioning between immiscible liquids, receptor-drug interaction, protein-protein and protein-DNA association, and protein stability. This volume sets out to present a coherent and comprehensive account of the concepts that underlie different approaches devised for the determination of free energies. The reader will gain the necessary insight into the theoretical and computational foundations of the subject and will be presented with relevant applications from molecular-level modelling and simulations of chemical and biological systems. Both formally accurate and approximate methods are covered using both classical and quantum mechanical descriptions. A central theme of the book is that the wide variety of free energy calculation techniques available today can be understood as different implementations of a few basic principles. The book is aimed at a broad readership of graduate students and researchers having a background in chemistry, physics, engineering and physical biology.
Download or read book Coarse Grained Modeling of Biomolecules written by Garegin A. Papoian and published by CRC Press. This book was released on 2017-10-30 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The chapters in this book survey the progress in simulating biomolecular dynamics.... The images conjured up by this work are not yet universally loved, but are beginning to bring new insights into the study of biological structure and function. The future will decide whether this scientific movement can bring forth its Picasso or Modigliani." –from the Foreword by Peter G. Wolynes, Bullard-Welch Foundation Professor of Science, Rice University This book highlights the state-of-art in coarse-grained modeling of biomolecules, covering both fundamentals as well as various cutting edge applications. Coarse-graining of biomolecules is an area of rapid advances, with numerous new force fields having appeared recently and significant progress made in developing a systematic theory of coarse-graining. The contents start with first fundamental principles based on physics, then survey specific state-of-art coarse-grained force fields of proteins and nucleic acids, and provide examples of exciting biological problems that are at large scale, and hence, only amenable to coarse-grained modeling. Introduces coarse-grained models of proteins and nucleic acids. Showcases applications such as genome packaging in nuclei and understanding ribosome dynamics Gives the physical foundations of coarse-graining Demonstrates use of models for large-scale assemblies in modern studies Garegin A. Papoian is the first Monroe Martin Associate Professor with appointments in the Department of Chemistry and Biochemistry and the Institute for Physical Science and Technology at the University of Maryland.
Download or read book Protein Physics written by Alexei V. Finkelstein and published by Elsevier. This book was released on 2016-06-22 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Protein Physics: A Course of Lectures covers the most general problems of protein structure, folding and function. It describes key experimental facts and introduces concepts and theories, dealing with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states. The book systematically summarizes and presents the results of several decades of worldwide fundamental research on protein physics, structure, and folding, describing many physical models that help readers make estimates and predictions of physical processes that occur in proteins. New to this revised edition is the inclusion of novel information on amyloid aggregation, natively disordered proteins, protein folding in vivo, protein motors, misfolding, chameleon proteins, advances in protein engineering & design, and advances in the modeling of protein folding. Further, the book provides problems with solutions, many new and updated references, and physical and mathematical appendices. In addition, new figures (including stereo drawings, with a special appendix showing how to use them) are added, making this an ideal resource for graduate and advanced undergraduate students and researchers in academia in the fields of biophysics, physics, biochemistry, biologists, biotechnology, and chemistry. - Fully revised and expanded new edition based on the latest research developments in protein physics - Written by the world's top expert in the field - Deals with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states - Summarizes, in a systematic form, the results of several decades of worldwide fundamental research on protein physics and their structure and folding - Examines experimental data on protein structure in the post-genome era
Download or read book Protein Folding Misfolding and Aggregation written by Victor Muñoz and published by Royal Society of Chemistry. This book was released on 2008 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Protein folding and aggregation is the process by which newly synthesized proteins fold into the specific three-dimensional structures defining their biologically active states. It has always been a major focus of research in biochemistry and has often been seen as the unsolved second part of the genetic code. In the last 10 years we have witnessed a quantum leap in the research in this exciting area. Computational methods have improved to the extent of making possible to simulate the complete folding process of small proteins and the early stages of protein aggregation. Experimental methods h.
Download or read book Protein and Peptide Folding Misfolding and Non Folding written by Reinhard Schweitzer-Stenner and published by John Wiley & Sons. This book was released on 2012-02-08 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sheds new light on intrinsically disordered proteins and peptides, including their role in neurodegenerative diseases With the discovery of intrinsically disordered proteins and peptides (IDPs), researchers realized that proteins do not necessarily adopt a well defined secondary and tertiary structure in order to perform biological functions. In fact, IDPs play biologically relevant roles, acting as inhibitors, scavengers, and even facilitating DNA/RNA-protein interactions. Due to their propensity for self-aggregation and fibril formation, some IDPs are involved in neurodegenerative diseases such as Parkinson's and Alzheimer's. With contributions from leading researchers, this text reviews the most recent studies, encapsulating our understanding of IDPs. The authors explain how the growing body of IDP research is building our knowledge of the folding process, the binding of ligands to receptor molecules, and peptide self-aggregation. Readers will discover a variety of experimental, theoretical, and computational approaches used to better understand the properties and function of IDPs. Moreover, they'll discover the role of IDPs in human disease and as drug targets. Protein and Peptide Folding, Misfolding, and Non-Folding begins with an introduction that explains why research on IDPs has significantly expanded in the past few years. Next, the book is divided into three sections: Conformational Analysis of Unfolded States Disordered Peptides and Molecular Recognition Aggregation of Disordered Peptides Throughout the book, detailed figures help readers understand the structure, properties, and function of IDPs. References at the end of each chapter serve as a gateway to the growing body of literature in the field. With the publication of Protein and Peptide Folding, Misfolding, and Non-Folding, researchers now have a single place to discover IDPs, their diverse biological functions, and the many disciplines that have contributed to our evolving understanding of them.
Download or read book Protein Misfolding Aggregation and Conformational Diseases written by Vladimir N. Uversky and published by Springer Science & Business Media. This book was released on 2007-05-26 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second volume continues to fill the gap in protein review and protocol literature. It does this while summarizing recent achievements in the understanding of the relationships between protein misfoldings, aggregation, and development of protein deposition disorders. The focus of Part B is the molecular basis of differential disorders.
Download or read book Protein Folding and Metal Ions written by Cláudio M. Gomes and published by CRC Press. This book was released on 2016-04-19 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The role of metal ions in protein folding and structure is a critical topic to a range of scientists in numerous fields, particularly those working in structural biology and bioinorganic chemistry, those studying protein folding and disease, and those involved in the molecular and cellular aspects of metals in biological systems. Protein Folding an
Download or read book Thermostable Proteins written by Srikanta Sen and published by CRC Press. This book was released on 2016-04-19 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the basic structural, thermodynamic and kinetic principles are covered and molecular strategies for the adaptation to high temperatures revealed by structure analysis are delineated. The roles of fluctuations, hydration and internal packing are thoroughly dicussed. Enzymes with a particular industrial importance, the subtilisin-like serine proteases, have been extensively studied by protein engineering. One extensive chapter is devoted to the present state of knowledge concerning structure-function relations and the origin of the their structural stability. Last but not least, computational and experimental approaches for the design of proteins with increased thermal stability based on sequences or 3D structures are present
Download or read book Misbehaving Proteins written by Regina Murphy and published by Springer Science & Business Media. This book was released on 2007-10-12 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an up-to-date collection of theoretical and experimental studies into protein folding, misfolding, aggregation, and stability. Additionally, issues faced during the development of protein products are illustrated. It contains an introductory chapter for readers new to the protein folding field. The book provides a thorough and clear discussion of computational approaches to understanding and modeling protein aggregation.
Download or read book Topology and Geometry of Biopolymers written by Erica Flapan and published by . This book was released on 2020 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the AMS Special Session on Topology of Biopolymers, held from April 21-22, 2018, at Northeastern University, Boston, MA. The papers cover recent results on the topology and geometry of DNA and protein knotting using techniques from knot theory, spatial graph theory, differential geometry, molecular simulations, and laboratory experimentation. They include current work on the following topics: the density and supercoiling of DNA minicircles; the dependence of DNA geometry on its amino acid sequence; random models of DNA knotting; topological models of DNA r.
Download or read book Computational and Experimental Protein Variant Interpretation in the Era of Precision Medicine written by Daniele Dell'Orco and published by Frontiers Media SA. This book was released on 2024-01-26 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the key goals in the postgenomic era is the elucidation of the mechanisms underlying the relationship between genotype and phenotype. In particular, understanding how human genetic and somatic variations are associated with diseases is still an open problem and its solution is a crucial issue for exploiting the possibilities offered by the modern sequencing techniques in the framework of precision and personalized medicine. The increasing amount of data generated by the sequencing initiatives calls for accurate and reliable computational approaches to predict the impact of mutations on the phenotype, and possibly for methods to correlate them with diseases. From the experimental point of view, disease-causing variants are supposed to directly affect protein function, protein stability as well as the kinetics and thermodynamics of protein-protein recognition, and robust validation at the molecular scale is necessary. This approach can be of invaluable help in facing new challenges such as the fast development of effective vaccines.
Download or read book Protein folding and misfolding neurodegenerative diseases written by Judit Ovádi and published by Springer Science & Business Media. This book was released on 2008-12-21 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering all the latest in the study of neurodegenerative diseases, this book reviews the molecular events initiated by unfolded or misfolded proteins leading to conformational human diseases, especially those found in Parkinson’s and Alzheimer’s diseases.
Download or read book Mechanisms of Protein Folding written by Roger H. Pain and published by Oxford University Press, USA. This book was released on 2000 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the first edition of mechanisms of protein folding in 1994, significant advances in both the technical and conceptual understanding of protein folding. This new edition has been brought up to date in content, context, and authorship and will make the subject accessibleto a wide range of scientists. The emphasis on experimental approaches has benn maintained from the first edition but this time within the explicit context of simulations and energy surfaces. There is an introductory chapter explaining the 'new' model of protein folding, which takes into account theheterogeneity of the starting state. Advances in interpreting observed kinetic data and the development of technology to observe fast folding reactions and characterize intermediate structures have accompanied this new view and are covered in detail. The term 'molten globule'is often usedincorrectly but here the significance of the term is carefully described at different satges of folding. The concept of the transition state, including the complementary approaches of molecular dynamics and protein engineering, is also discussed in detail. In vitro studies provide the molecularbasis for the thermodynamic and kinetic energy minimization of the in vivo processes of protein folding and two of the potentially rate determining reactions are disulphide bond formation and proline isomerization. It has also become increasingly apparent that chaperone proteins play a vital role inprotein folding and other reactions of proteins involoving major conformational change and the molecular details of these processes are discussed in detail in chapter 14. The final chapter describes the centreal importance of protein folding and unfolding reactions in disease and gives claerdefinition of the term 'misfolding'. Studying protein folding in vivo is full of problems and to show how these problems can be overcome in practice, three case studies of three very different types of protein have been included: the small globular protein apomyoglobin; the fibrous protein collagen;and the membrane protein haemagglutinin.