EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Exotic States in Quantum Nanostructures

Download or read book Exotic States in Quantum Nanostructures written by Sarben Sarkar and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mesoscopic physics has made great strides in the last few years. It is an area of research that is attractive to many graduate students of theoretical condensed matter physics. The techniques that are needed to understand it go beyond the conventional perturbative approaches that still form the bulk of the graduate lectures that are given to students. Even when the non-perturbative techniques are presented, they often are presented within an abstract context. It is important to have lectures given by experts in the field, which present both theory and experiment in an illuminating and inspiring way, so that the impact of new methodology on novel physics is clear. It is an apt time to have such a volume since the field has reached a level of maturity. The pedagogical nature of the articles and the variety of topics makes it an important resource for newcomers to the field. The topics range from the newly emerging area of quantum computers and quantum information using Josephson junctions to the formal mathematical methods of conformal field theory which are applied to the understanding of Luttinger liquids. Electrons which interact strongly can give rise to non-trivial ground states such as superconductivity, quantum Hall states and magnetism. Both their theory and application are discussed in a pedagogical way for quantum information in mesoscopic superconducting devices, skyrmions and magnetism in two dimensional electron gases, transport in quantum wires, metal-insulator transitions and spin electronics.

Book One Dimensional Metals

    Book Details:
  • Author : Siegmar Roth
  • Publisher : John Wiley & Sons
  • Release : 2006-03-06
  • ISBN : 3527605800
  • Pages : 264 pages

Download or read book One Dimensional Metals written by Siegmar Roth and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-dimensional solids are of fundamental interest in materials science due to their anisotropic properties. Written not only for experts in the field, this book explains the important concepts behind their physics and surveys the most interesting one-dimensional systems and discusses their present and emerging applications in molecular scale electronics. The second edition of this successful book has been completely revised to include the remarkable achievements of the last ten years of research and applications. Chemists, polymer and materials scientists as well as students will find this book a very readable introduction to the solid-state physics of electronic materials.

Book Quantum Optics

Download or read book Quantum Optics written by D.F. Walls and published by Springer Science & Business Media. This book was released on 2008-01-03 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: The formalism of quantum optics is elucidated in the early chapters and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook.

Book Nanomagnetism

Download or read book Nanomagnetism written by and published by Elsevier. This book was released on 2006-03-27 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscience is of central importance in the physical and biological sciences and is now pervasive in technology. However nanomagnetism has a special role to play as magnetic properties depend uniquely on both dimensionality and lengthscales. Nanomagnetism is already central to data storage, sensor and device technologies but is increasingly being used in the life sciences and medicine. This volume aims to introduce scientists, computer scientists, engineers and technologists from diverse fields to this fascinating and technologically important new branch of nanoscience. The volume should appeal to both the interested general reader but also to the researcher wishing to obtain an overview of this fast moving field. The contributions come from acknowledged leaders in the field who each give authoritative accounts of key fundamental aspects of nanomagnetism to which they have themselves made a major contribution. After a brief introduction by the editors, Wu first surveys the fundamental properties of magnetic nanostructures. The interlayer exchange interactions within magnetic multilayer structures is next discussed by Stiles. Camley then discusses the static, dynamic and thermal properties of magnetic multilayers and nanostructures, followed by an account of the phenomenon of exchange anisotropy by Berkowitz and Kodama. This latter phenomenon is widely in current read head devices for example. The transport properties of nanostructures also are spectacular, and again underpin computer technology, as we see from the discussion of giant magnetoresistance (GMR) and tunnelling magnetoresistance (TMR) presented by Fert and his colleagues. Beyond GMR and TMR we look to the field of spintronics where new electronic devices are envisioned and for which quantumcomputing may depend as discussed in the chapter by Flatte and Jonker.The volume concludes with discussion of the recently discovered phenomenon of current induced switching of magnetization by Edwards and Mathon. * Subject is in the forefront of nanoscience* All Section authors are leading figures in this key field* Presentations are accessible to non specialists, with focus on underlying fundamentals

Book Superconductivity  Superfluids and Condensates

Download or read book Superconductivity Superfluids and Condensates written by James F. Annett and published by Oxford University Press. This book was released on 2004-03-25 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook series has been designed for final year undergraduate and first year graduate students, providing an overview of the entire field showing how specialized topics are part of the wider whole, and including references to current areas of literature and research.

Book 21st Century Nanoscience     A Handbook

Download or read book 21st Century Nanoscience A Handbook written by Klaus D. Sattler and published by CRC Press. This book was released on 2020-04-02 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. The fifth volume in a ten-volume set covers exotic nanostructures and quantum systems. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.

Book Spintronic Materials and Technology

Download or read book Spintronic Materials and Technology written by Yongbing Xu and published by CRC Press. This book was released on 2006-10-25 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few books exist that cover the hot field of second-generation spintronic devices, despite their potential to revolutionize the IT industry.Compiling the obstacles and progress of spin-controlled devices into one source, Spintronic Materials and Technology presents an in-depth examination of the most recent technological spintronic developmen

Book Nanostructures and Nanotechnology

Download or read book Nanostructures and Nanotechnology written by Douglas Natelson and published by Cambridge University Press. This book was released on 2015-06-18 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: A carefully developed textbook focusing on the fundamental principles of nanoscale science and nanotechnology.

Book Solid State and Quantum Theory for Optoelectronics

Download or read book Solid State and Quantum Theory for Optoelectronics written by Michael A. Parker and published by CRC Press. This book was released on 2009-12-16 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: While applications rapidly change one to the next in our commercialized world, fundamental principles behind those applications remain constant. So if one understands those principles well enough and has ample experience in applying them, he or she will be able to develop a capacity for reaching results via conceptual thinking rather than having to

Book Impurity Quantum Phase Transitions in Quantum Dot Nanostructures

Download or read book Impurity Quantum Phase Transitions in Quantum Dot Nanostructures written by Lucas Bernd Marie Peeters and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic systems subject to competing interactions can end up in different phases as the balance between these interactions shifts. When a quantum critical point separates these phases, exotic electronic behavior often marks the vicinity of the transition. In this work, we construct nanopatterned devices to probe such critical phenomena. The basic element of our devices is the GaAs/AlGaAs quantum dot, an isolated region of electronic charge which is coupled to a two-dimensional gas of weakly interacting electrons. We use different designs of quantum dots to realize different models. The first device studied in this work realizes the spin two-channel Kondo ('spin 2CK') model. In this model, a single impurity (i.e. a single spin-degenerate dot) is coupled to two separate reservoirs. When the couplings to both reservoirs are unequal, the more strongly coupled reservoir screens the impurity spin degeneracy and forms a many-body singlet; this is known as the Kondo effect. When both reservoirs are coupled equally strongly, a non-Fermi liquid ground state arises as a result of the overscreening by both reservoirs. We probe the anomalous scaling properties of this state, and show how it transitions into a more conventional Fermi liquid under the influence of various perturbations. The second device is first operated as a single metallic quantum dot in the quantum Hall regime. Spin degeneracy is broken, but the device can be tuned such that there is now a charge degeneracy which can then be screened by coupling to a reservoir. We tune to and away from equal couplings to see the effect of the two-channel Kondo state. Finally, we operate the second device in its full form as a double-dot device, to explore the competition between dot-lead and interdot interactions.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2004 with total page 1574 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Properties of Metal Oxide Nanostructures

Download or read book Optical Properties of Metal Oxide Nanostructures written by Vijay Kumar and published by Springer Nature. This book was released on 2023-10-25 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the optical properties of metal oxides at both the fundamental and applied level and their use in various applications. The book offers a basic understanding of the optical properties and related spectroscopic techniques essential for anyone interested in learning about metal oxide nanostructures. This is partly due to the fact that optical properties are closely associated with other properties and functionalities (e.g., electronic, magnetic, and thermal), which are of essential significance to many technological applications, such as optical data communications, imaging, lighting, and displays, life sciences, health care, security, and safety. The book also highlights the fundamentals and systematic developments in various optical techniques to achieve better characterization, cost-effective, user-friendly approaches, and most importantly, state-of-the-art developing methodologies for various scientific and technological applications. It provides an adequate understanding of the imposed limitations and highlights the prospects and challenges associated with optical analytical methods to achieve the desired performance in targeted applications.

Book 21st Century Nanoscience   A Handbook

Download or read book 21st Century Nanoscience A Handbook written by Klaus D Sattler and published by CRC Press. This book was released on 2022-06-13 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This up-to-date reference is the most comprehensive summary of the field of nanoscience and its applications. It begins with fundamental properties at the nanoscale and then goes well beyond into the practical aspects of the design, synthesis, and use of nanomaterials in various industries.

Book Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics

Download or read book Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics written by Mohamed Henini and published by Elsevier Science. This book was released on 2008 with total page 841 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1969, Leo Esaki (1973 Nobel Laureate) and Ray Tsu from IBM, USA, proposed research on “man-made crystals” using a semiconductor superlattice (a semiconductor structure comprising several alternating ultra-thin layers of semiconductor materials with different properties). This invention was perhaps the first proposal to advocate the engineering of a new semiconductor material, and triggered a wide spectrum of experimental and theoretical investigations. However, the study of what are now called low dimensional structures (LDS) began in the late 1970's when sufficiently thin epitaxial layers were first produced following developments in the technology of epitaxial growth of semiconductors, mainly pioneered in industrial laboratories for device purposes. The LDS are materials structures whose dimensions are comparable with inter-atomic distances in solids (i.e. nanometre, nm). Their electronic properties are significantly different from the same material in bulk form. These properties are changed by quantum effects. At the inception of their investigation it was already clear that such structures were of great scientific interest and excitement and their novel properties caused by quantum effects offered potential for application in new devices. Moreover these complex LDS offer device engineers new design opportunities for tailor-made new generation electronic devices. The LDS could be considered as a new branch of condensed matter physics because of the large variety of possible structures and the changes in the physical processes. One of the promising fabrication methods to produce and study structures with a dimension less than two such as quantum wires and quantum dots, in order to realise novel devices that make use of low-dimensional confinement effects, is self-organisation. Self-assembled nanostructured materials offer a number of advantages over conventional material technologies in a wide-range of sectors. Clearly, future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. Key Features: - Contributors are world leaders in the field - Brings together all the factors which are essential in self-organisation of quantum nanostructures - Reviews the current status of research and development in self-organised nanostructured materials - Provides a ready source of information on a wide range of topics - Useful to any scientist who is involved in nanotechnology - Excellent starting point for workers entering the field - Serves as an excellent reference manual

Book Self Assembled Quantum Dots

Download or read book Self Assembled Quantum Dots written by Zhiming M Wang and published by Springer Science & Business Media. This book was released on 2007-11-29 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.

Book Handbook of Nanophysics

    Book Details:
  • Author : Klaus D. Sattler
  • Publisher : CRC Press
  • Release : 2016-04-19
  • ISBN : 1420075454
  • Pages : 718 pages

Download or read book Handbook of Nanophysics written by Klaus D. Sattler and published by CRC Press. This book was released on 2016-04-19 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 1990s, nanoparticles and quantum dots began to be used in optical, electronic, and biological applications. Now they are being studied for use in solid-state quantum computation, tumor imaging, and photovoltaics. Handbook of Nanophysics: Nanoparticles and Quantum Dots focuses on the fundamental physics of these nanoscale materials and struct

Book Fundamental and Applied Nano Electromagnetics II

Download or read book Fundamental and Applied Nano Electromagnetics II written by Antonio Maffucci and published by Springer. This book was released on 2019-06-14 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing prevalence of nanotechnologies has led to the birth of “nanoelectromagnetics,” a novel applied science related to the interaction of electromagnetic radiation with quantum mechanical low-dimensional systems. This book provides an overview of the latest advances in nanoelectromagnetics, and presents contributions from an interdisciplinary community of scientists and technologists involved in this research topic. The aspects covered here range from the synthesis of nanostructures and nanocomposites to their characterization, and from the design of devices and systems to their fabrication. The book also focuses on the novel frontier of terahertz technology, which has been expanded by the impressive strides made in nanotechnology, and presents a comprehensive overview of the: - synthesis of various nanostructured materials; - study of their electrical and optical properties; - use of nano-sized elements and nanostructures as building blocks for devices; - design and fabrication of nanotechnology devices operating in the THz, IR and optical range. The book introduces the reader to materials like nanocomposites, graphene nanoplatelets, carbon nanotubes, metal nanotubes, and silicon nanostructures; to devices like photonic crystals, microcavities, antennas, and interconnects; and to applications like sensing and imaging, with a special emphasis on the THz frequency range.