Download or read book Excursions in Number Theory Algebra and Analysis written by Kenneth Ireland and published by Springer Nature. This book was released on 2023-03-27 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook originates from a course taught by the late Ken Ireland in 1972. Designed to explore the theoretical underpinnings of undergraduate mathematics, the course focused on interrelationships and hands-on experience. Readers of this textbook will be taken on a modern rendering of Ireland’s path of discovery, consisting of excursions into number theory, algebra, and analysis. Replete with surprising connections, deep insights, and brilliantly curated invitations to try problems at just the right moment, this journey weaves a rich body of knowledge that is ideal for those going on to study or teach mathematics. A pool of 200 ‘Dialing In’ problems opens the book, providing fuel for active enquiry throughout a course. The following chapters develop theory to illuminate the observations and roadblocks encountered in the problems, situating them in the broader mathematical landscape. Topics cover polygons and modular arithmetic; the fundamental theorems of arithmetic and algebra; irrational, algebraic and transcendental numbers; and Fourier series and Gauss sums. A lively accompaniment of examples, exercises, historical anecdotes, and asides adds motivation and context to the theory. Return trips to the Dialing In problems are encouraged, offering opportunities to put theory into practice and make lasting connections along the way. Excursions in Number Theory, Algebra, and Analysis invites readers on a journey as important as the destination. Suitable for a senior capstone, professional development for practicing teachers, or independent reading, this textbook offers insights and skills valuable to math majors and high school teachers alike. A background in real analysis and abstract algebra is assumed, though the most important prerequisite is a willingness to put pen to paper and do some mathematics.
Download or read book Excursions in Mathematics written by C. Stanley Ogilvy and published by Courier Corporation. This book was released on 1994-01-01 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lively and accessible exploration of the nature of mathematics examines the role of the mathematician as well as the four major branches: number theory, algebra, geometry, and analysis.
Download or read book Excursions in Geometry written by Charles Stanley Ogilvy and published by Courier Corporation. This book was released on 1990-01-01 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightedge, compass, and a little thought are all that's needed to discover the intellectual excitement of geometry. Harmonic division and Apollonian circles, inversive geometry, hexlet, Golden Section, more. 132 illustrations.
Download or read book Excursions in Number Theory written by Charles Stanley Ogilvy and published by Courier Corporation. This book was released on 1988-01-01 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Challenging, accessible mathematical adventures involving prime numbers, number patterns, irrationals and iterations, calculating prodigies, and more. No special training is needed, just high school mathematics and an inquisitive mind. "A splendidly written, well selected and presented collection. I recommend the book unreservedly to all readers." — Martin Gardner.
Download or read book Excursions in Number Theory Algebra and Analysis written by Kenneth Ireland and published by Springer. This book was released on 2023-03-29 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook originates from a course taught by the late Ken Ireland in 1972. Designed to explore the theoretical underpinnings of undergraduate mathematics, the course focused on interrelationships and hands-on experience. Readers of this textbook will be taken on a modern rendering of Ireland’s path of discovery, consisting of excursions into number theory, algebra, and analysis. Replete with surprising connections, deep insights, and brilliantly curated invitations to try problems at just the right moment, this journey weaves a rich body of knowledge that is ideal for those going on to study or teach mathematics. A pool of 200 ‘Dialing In’ problems opens the book, providing fuel for active enquiry throughout a course. The following chapters develop theory to illuminate the observations and roadblocks encountered in the problems, situating them in the broader mathematical landscape. Topics cover polygons and modular arithmetic; the fundamental theorems of arithmetic and algebra; irrational, algebraic and transcendental numbers; and Fourier series and Gauss sums. A lively accompaniment of examples, exercises, historical anecdotes, and asides adds motivation and context to the theory. Return trips to the Dialing In problems are encouraged, offering opportunities to put theory into practice and make lasting connections along the way. Excursions in Number Theory, Algebra, and Analysis invites readers on a journey as important as the destination. Suitable for a senior capstone, professional development for practicing teachers, or independent reading, this textbook offers insights and skills valuable to math majors and high school teachers alike. A background in real analysis and abstract algebra is assumed, though the most important prerequisite is a willingness to put pen to paper and do some mathematics.
Download or read book Excursions in Calculus written by Robert M. Young and published by American Mathematical Soc.. This book was released on 1992-10-01 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the rich and elegant interplay between the two main currents of mathematics, the continuous and the discrete. Such fundamental notions in discrete mathematics as induction, recursion, combinatorics, number theory, discrete probability, and the algorithmic point of view as a unifying principle are continually explored as they interact with traditional calculus.
Download or read book Excursions in the History of Mathematics written by Israel Kleiner and published by Springer Science & Business Media. This book was released on 2012-02-02 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises five parts. The first three contain ten historical essays on important topics: number theory, calculus/analysis, and proof, respectively. Part four deals with several historically oriented courses, and Part five provides biographies of five mathematicians who played major roles in the historical events described in the first four parts of the work. Excursions in the History of Mathematics was written with several goals in mind: to arouse mathematics teachers’ interest in the history of their subject; to encourage mathematics teachers with at least some knowledge of the history of mathematics to offer courses with a strong historical component; and to provide an historical perspective on a number of basic topics taught in mathematics courses.
Download or read book Mathematical Excursions to the World s Great Buildings written by Alexander J. Hahn and published by Princeton University Press. This book was released on 2012-07-22 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: How mathematics helped build the world's most important buildings from early Egypt to the present From the pyramids and the Parthenon to the Sydney Opera House and the Bilbao Guggenheim, this book takes readers on an eye-opening tour of the mathematics behind some of the world's most spectacular buildings. Beautifully illustrated, the book explores the milestones in elementary mathematics that enliven the understanding of these buildings and combines this with an in-depth look at their aesthetics, history, and structure. Whether using trigonometry and vectors to explain why Gothic arches are structurally superior to Roman arches, or showing how simple ruler and compass constructions can produce sophisticated architectural details, Alexander Hahn describes the points at which elementary mathematics and architecture intersect. Beginning in prehistoric times, Hahn proceeds to guide readers through the Greek, Roman, Islamic, Romanesque, Gothic, Renaissance, and modern styles. He explores the unique features of the Pantheon, the Hagia Sophia, the Great Mosque of Cordoba, the Duomo in Florence, Palladio's villas, and Saint Peter's Basilica, as well as the U.S. Capitol Building. Hahn celebrates the forms and structures of architecture made possible by mathematical achievements from Greek geometry, the Hindu-Arabic number system, two- and three-dimensional coordinate geometry, and calculus. Along the way, Hahn introduces groundbreaking architects, including Brunelleschi, Alberti, da Vinci, Bramante, Michelangelo, della Porta, Wren, Gaudí, Saarinen, Utzon, and Gehry. Rich in detail, this book takes readers on an expedition around the globe, providing a deeper understanding of the mathematical forces at play in the world's most elegant buildings.
Download or read book An Excursion through Elementary Mathematics Volume I written by Antonio Caminha Muniz Neto and published by Springer. This book was released on 2017-04-10 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This first volume covers Real Numbers, Functions, Real Analysis, Systems of Equations, Limits and Derivatives, and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as well as many essential theorems related to the content. An extensive Appendix offering hints on or full solutions for all difficult problems rounds out the book.
Download or read book Number Fields written by Daniel A. Marcus and published by Springer. This book was released on 2018-07-05 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
Download or read book Mathematics and Computation written by Avi Wigderson and published by Princeton University Press. This book was released on 2019-10-29 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Download or read book Analysis and Probability written by Palle E. T. Jorgensen and published by Springer Science & Business Media. This book was released on 2007-10-17 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines analysis and tools from probability, harmonic analysis, operator theory, and engineering (signal/image processing) Interdisciplinary focus with hands-on approach, generous motivation and new pedagogical techniques Numerous exercises reinforce fundamental concepts and hone computational skills Separate sections explain engineering terms to mathematicians and operator theory to engineers Fills a gap in the literature
Download or read book Analysis written by Elliott H. Lieb and published by American Mathematical Soc.. This book was released on 2001 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This course in real analysis begins with the usual measure theory, then brings the reader quickly to a level where a wider than usual range of topics can be appreciated. Topics covered include Lp- spaces, rearrangement inequalities, sharp integral inequalities, distribution theory, Fourier analysis, potential theory, and Sobolev spaces. To illustrate these topics, there is a chapter on the calculus of variations, with examples from mathematical physics, as well as a chapter on eigenvalue problems (new to this edition). For graduate students of mathematics, and for students of the natural sciences and engineering who want to learn tools of real analysis. Assumes a previous course in calculus. Lieb is affiliated with Princeton University. Loss is affiliated with Georgia Institute of Technology. c. Book News Inc.
Download or read book An Invitation to Abstract Mathematics written by Béla Bajnok and published by Springer Nature. This book was released on 2020-10-27 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA Reviews The style of writing is careful, but joyously enthusiastic.... The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
Download or read book Theory of Algebraic Integers written by Richard Dedekind and published by Cambridge University Press. This book was released on 1996-09-28 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: A translation of a classic work by one of the truly great figures of mathematics.
Download or read book The Junior College Library Collection written by Frank J. Bertalan and published by . This book was released on 1968 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book An Introduction to Abstract Mathematics written by Robert J. Bond and published by Waveland Press. This book was released on 2007-08-24 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.