EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Exciton trion polaritons in Two dimensional Transition metal Dichalcogenides

Download or read book Exciton trion polaritons in Two dimensional Transition metal Dichalcogenides written by Okan Koksal and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation covers a series of experiments that realized, investigated, and controlled exciton-trion-polaritons in transition-metal dichalcogenides (TMDs). First, theoretical and experimental research that led to the established understanding of trions are reviewed. Then, recent theoretical developments that led to a complete reimagining of excitons, trions, and their interactions with photons is discussed. With the theoretical background established, detailed measurements of optical conductivity of TMD MoSe$_2$ are combined with quantitative analysis to determine the nature of strong Coulomb interactions between excitons and bound trions in TMDs. Then, design and simulations of, and measurements on a hybrid photonic-crystal-TMD structure is discussed whereupon remarkable agreement between experiment and theory evidences the existence of coherent exciton-trion-polariton formation. Initial experimental forays into electronic control of the optical properties of this polariton system is then reviewed. In the final chapter of this dissertation, a non-exhaustive investigation of potential device applications based on the understanding of exciton-trion-polaritons is conducted.

Book Advances in Condensed Matter and Materials Physics

Download or read book Advances in Condensed Matter and Materials Physics written by Jagannathan Thirumalai and published by BoD – Books on Demand. This book was released on 2020-05-06 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, Condensed Matter and Material Physics, incorporates the work of multiple authors to enhance the theoretical as well as experimental knowledge of materials. The investigation of crystalline solids is a growing need in the electronics industry. Micro and nano transistors require an in-depth understanding of semiconductors of different groups. Amorphous materials, on the other hand, as non-equilibrium materials are widely applied in sensors and other medical and industrial applications. Superconducting magnets, composite materials, lasers, and many more applications are integral parts of our daily lives. Superfluids, liquid crystals, and polymers are undergoing active research throughout the world. Hence profound information on the nature and application of various materials is in demand. This book bestows on the reader a deep knowledge of physics behind the concepts, perspectives, characteristic properties, and prospects. The book was constructed using 10 contributions from experts in diversified fields of condensed matter and material physics and its technology from over 15 research institutes across the globe.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Alexander V. Kolobov and published by Springer. This book was released on 2016-07-26 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

Book Trion Formation Dynamics in Monolayer Transition Metal Dichalcogenides

Download or read book Trion Formation Dynamics in Monolayer Transition Metal Dichalcogenides written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, we report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides, specifically molybdenum diselenide (MoSe2), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transition, trions are generated on a picosecond time scale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ~50%. This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in transition metal dichalcogenides.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Narayanasamy Sabari Arul and published by Springer. This book was released on 2019-07-30 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.

Book Duality Symmetry

    Book Details:
  • Author : Ivan Fernandez-Corbaton
  • Publisher : MDPI
  • Release : 2020-12-10
  • ISBN : 303936569X
  • Pages : 144 pages

Download or read book Duality Symmetry written by Ivan Fernandez-Corbaton and published by MDPI. This book was released on 2020-12-10 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symmetry is one of the most general concepts in physics. Symmetry arguments are used to explain and predict observations at all length scales, from elementary particles to cosmology. The generality of symmetry arguments, combined with their simplicity, makes them a powerful tool for both fundamental and applied investigations. In electrodynamics, one of the symmetries is the invariance of the equations under exchange of electric and magnetic quantities. The continuous version of this symmetry is most commonly known as electromagnetic duality symmetry. This concept has been accepted for more than a century, and, throughout this time, has influenced other areas of physics, like high energy physics and gravitation. This Special Issue is devoted to electromagnetic duality symmetry and other vareities of dualities in physics. It contains four Articles, one Review and one Perspective. The context of the contributions ranges from string theory to applied nanophotonics, which, as anticipated, shows that duality symmetries in general and electromagnetic duality symmetry in particular are useful in a wide variety of physics fields, both theoretical and applied. Moreover, a number of the contributions show how the use of symmetry arguments and the quantification of symmetry breaking can successfully guide our theoretical understanding and provide us with guidelines for system design.

Book Excitons in Two Dimensional Materials

Download or read book Excitons in Two Dimensional Materials written by Xian Zhang and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of the reduced dielectric screening and enhanced Coulomb interactions, two-dimensional (2D) materials like phosphorene and transition metal dichalcogenides (TMDs) exhibit strong excitonic effects, resulting in fascinating many-particle phenomena covering both intralayer and interlayer excitons. Their intrinsic band gaps and strong excitonic emissions allow the possibility to tune the inherent optical, electrical, and optoelectronic properties of 2D materials via a variety of external stimuli, making them potential candidates for novel optoelectronic applications. In this review, we summarize exciton physics and devices in 2D semiconductors and insulators, especially in phosphorene, TMDs, and their van der Waals heterostructures (vdWHs). In the first part, we discuss the remarkably versatile excitonic landscape, including bright and dark excitons, trions, biexcitons, and interlayer excitons. In the second part, we examine common control methods to tune excitonic effects via electrical, magnetic, optical, and mechanical means. In the next stage, we provide recent advances on the optoelectronic device applications, such as electroluminescent devices, photovoltaic solar cells, and photodetectors. We conclude with a brief discussion on their potential to exploit vdWHs toward unique exciton physics and devices.

Book Quantum Confined Excitons in 2 Dimensional Materials

Download or read book Quantum Confined Excitons in 2 Dimensional Materials written by Carmen Palacios-Berraquero and published by Springer. This book was released on 2018-11-02 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the first established experimental results of an emergent field: 2-dimensional materials as platforms for quantum technologies, specifically through the optics of quantum-confined excitons. It also provides an extensive review of the literature from a number of disciplines that informed the research, and introduces the materials of focus – 2d Transition Metal Dichalcogenides (2d-TMDs) – in detail, discussing electronic and chemical structure, excitonic behaviour and response to strain. This is followed by a brief overview of quantum information technologies, including concepts such as single-photon sources and quantum networks. The methods chapter addresses quantum optics techniques and 2d-material processing, while the results section shows the development of a method to deterministically create quantum dots (QDs) in the 2d-TMDs, which can trap single-excitons; the fabrication of atomically thin quantum light-emitting diodes to induce all-electrical single-photon emission from the QDs, and lastly, the use of devices to controllably trap single-spins in the QDs –the first step towards their use as optically-addressable matter qubits.

Book Microcavities

    Book Details:
  • Author : Alexey Kavokin
  • Publisher : OUP Oxford
  • Release : 2011-04-27
  • ISBN : 0191620734
  • Pages : 487 pages

Download or read book Microcavities written by Alexey Kavokin and published by OUP Oxford. This book was released on 2011-04-27 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. This book addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc. Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.

Book Exciton Spectrum in Two dimensional Transition Metal Dichalcogenides

Download or read book Exciton Spectrum in Two dimensional Transition Metal Dichalcogenides written by Maxim Trushin and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 2D Monoelemental Materials  Xenes  and Related Technologies

Download or read book 2D Monoelemental Materials Xenes and Related Technologies written by Zongyu Huang and published by CRC Press. This book was released on 2022-04-19 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.

Book 2D Materials

Download or read book 2D Materials written by Phaedon Avouris and published by Cambridge University Press. This book was released on 2017-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Book Semiconductor Photonics of Nanomaterials and Quantum Structures

Download or read book Semiconductor Photonics of Nanomaterials and Quantum Structures written by Arash Rahimi-Iman and published by Springer Nature. This book was released on 2021-04-23 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the wider field of functional nanomaterials sciences, with a strong emphasis on semiconductor photonics. Whether you are studying photonic quantum devices or just interested in semiconductor nanomaterials and their benefits for optoelectronic applications, this book offers you a pedagogical overview of the relevant subjects along with topical reviews. The book discusses different yet complementary studies in the context of ongoing international research efforts, delivering examples from both fundamental and applied research to a broad readership. In addition, a hand-full of useful optical techniques for the characterization of semiconductor quantum structures and materials are addressed. Moreover, nanostructuring methods for the production of low-dimensional systems, which exhibit advantageous properties predominantly due to quantum effects, are summarized. Science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences, and quantum physics can familiarize themselves with selected highlights with eyes towards photonic applications in the fields of two-dimensional materials research, light–matter interactions, and quantum technologies.

Book Optical Properties of 2D Systems with Interacting Electrons

Download or read book Optical Properties of 2D Systems with Interacting Electrons written by Wolfgang J. Ossau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Research Workshop, held in St. Petersburg, Russia, 13-16 June 2002

Book Semiconductor Devices  Physics and Technology

Download or read book Semiconductor Devices Physics and Technology written by S. M. Sze and published by . This book was released on 2013 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: