Download or read book Exact Confidence Bounds when Sampling from Small Finite Universes written by Tommy Wright and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a very simple and fundamental concept· to much of probability and statistics that can be conveyed using the following problem. PROBLEM. Assume a finite set (universe) of N units where A of the units have a particular attribute. The value of N is known while the value of A is unknown. If a proper subset (sample) of size n is selected randomly and a of the units in the subset are observed to have the particular attribute, what can be said about the unknown value of A? The problem is not new and almost anyone can describe several situations where a particular problem could be presented in this setting. Some recent references with different focuses include Cochran (1977); Williams (1978); Hajek (1981); Stuart (1984); Cassel, Samdal, and Wretman (1977); and Johnson and Kotz (1977). We focus on confidence interval estimation of A. Several methods for exact confidence interval estimation of A exist (Buonaccorsi, 1987, and Peskun, 1990), and this volume presents the theory and an extensive Table for one of them. One of the important contributions in Neyman (1934) is a discussion of the meaning of confidence interval estimation and its relationship with hypothesis testing which we will call the Neyman Approach. In Chapter 3 and following Neyman's Approach for simple random sampling (without replacement), we present an elementary development of exact confidence interval estimation of A as a response to the specific problem cited above.
Download or read book Exact Confidence Bounds When Sampling from Small Finite Universes written by Tommy Wright and published by . This book was released on 1991-07-17 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Logistic Regression with Missing Values in the Covariates written by Werner Vach and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many areas of science a basic task is to assess the influence of several factors on a quantity of interest. If this quantity is binary logistic, regression models provide a powerful tool for this purpose. This monograph presents an account of the use of logistic regression in the case where missing values in the variables prevent the use of standard techniques. Such situations occur frequently across a wide range of statistical applications. The emphasis of this book is on methods related to the classical maximum likelihood principle. The author reviews the essentials of logistic regression and discusses the variety of mechanisms which might cause missing values while the rest of the book covers the methods which may be used to deal with missing values and their effectiveness. Researchers across a range of disciplines and graduate students in statistics and biostatistics will find this a readable account of this.
Download or read book Lectures on Random Voronoi Tessellations written by Jesper Moller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tessellations are subdivisions of d-dimensional space into non-overlapping "cells". Voronoi tessellations are produced by first considering a set of points (known as nuclei) in d-space, and then defining cells as the set of points which are closest to each nuclei. A random Voronoi tessellation is produced by supposing that the location of each nuclei is determined by some random process. They provide models for many natural phenomena as diverse as the growth of crystals, the territories of animals, the development of regional market areas, and in subjects such as computational geometry and astrophysics. This volume provides an introduction to random Voronoi tessellations by presenting a survey of the main known results and the directions in which research is proceeding. Throughout the volume, mathematical and rigorous proofs are given making this essentially a self-contained account in which no background knowledge of the subject is assumed.
Download or read book Latent Variable Modeling and Applications to Causality written by Maia Berkane and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers refereed papers presented at the 1994 UCLA conference on "La tent Variable Modeling and Application to Causality. " The meeting was organized by the UCLA Interdivisional Program in Statistics with the purpose of bringing together a group of people who have done recent advanced work in this field. The papers in this volume are representative of a wide variety of disciplines in which the use of latent variable models is rapidly growing. The volume is divided into two broad sections. The first section covers Path Models and Causal Reasoning and the papers are innovations from contributors in disciplines not traditionally associated with behavioural sciences, (e. g. computer science with Judea Pearl and public health with James Robins). Also in this section are contri butions by Rod McDonald and Michael Sobel who have a more traditional approach to causal inference, generating from problems in behavioural sciences. The second section encompasses new approaches to questions of model selection with emphasis on factor analysis and time varying systems. Amemiya uses nonlinear factor analysis which has a higher order of complexity associated with the identifiability condi tions. Muthen studies longitudinal hierarchichal models with latent variables and treats the time vector as a variable rather than a level of hierarchy. Deleeuw extends exploratory factor analysis models by including time as a variable and allowing for discrete and ordi nal latent variables. Arminger looks at autoregressive structures and Bock treats factor analysis models for categorical data.
Download or read book Series Approximation Methods in Statistics written by John E. Kolassa and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this subject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily 011 notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts as possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted.
Download or read book Mixing written by Paul Doukhan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixing is concerned with the analysis of dependence between sigma-fields defined on the same underlying probability space. It provides an important tool of analysis for random fields, Markov processes, central limit theorems as well as being a topic of current research interest in its own right. The aim of this monograph is to provide a study of applications of dependence in probability and statistics. It is divided in two parts, the first covering the definitions and probabilistic properties of mixing theory. The second part describes mixing properties of classical processes and random fields as well as providing a detailed study of linear and Gaussian fields. Consequently, this book will provide statisticians dealing with problems involving weak dependence properties with a powerful tool.
Download or read book Applications of Computer Aided Time Series Modeling written by Masanao Aoki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of three parts: Part One is composed of two introductory chapters. The first chapter provides an instrumental varible interpretation of the state space time series algorithm originally proposed by Aoki (1983), and gives an introductory account for incorporating exogenous signals in state space models. The second chapter, by Havenner, gives practical guidance in apply ing this algorithm by one of the most experienced practitioners of the method. Havenner begins by summarizing six reasons state space methods are advanta geous, and then walks the reader through construction and evaluation of a state space model for four monthly macroeconomic series: industrial production in dex, consumer price index, six month commercial paper rate, and money stock (Ml). To single out one of the several important insights in modeling that he shares with the reader, he discusses in Section 2ii the effects of sampling er rors and model misspecification on successful modeling efforts. He argues that model misspecification is an important amplifier of the effects of sampling error that may cause symplectic matrices to have complex unit roots, a theoretical impossibility. Correct model specifications increase efficiency of estimators and often eliminate this finite sample problem. This is an important insight into the positive realness of covariance matrices; positivity has been emphasized by system engineers to the exclusion of other methods of reducing sampling error and alleviating what is simply a finite sample problem. The second and third parts collect papers that describe specific applications.
Download or read book Pivotal Measures in Statistical Experiments and Sufficiency written by Sakutaro Yamada and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present work I want to show a mathematical study of the statistical notion of sufficiency mainly for undominated statistical experiments. The famous Burkholder's (1961) and Pitcher's(1957) examples motivated some researchers to develop new theory of sufficiency. Le Cam (1964) is probably the most excellent paper in this field of study. This note also belongs to the same area. Though it is more restrictive than Le Cam's paper(1964), a study which is connected more directly with the classical papers of Halmos and Savage(1949) , and Bahadur(1954) is shown. Namely I want to develop a study based on the notion of pivotal measure which was introduced by Halmos and Savage(1949) . It is great pleasure to have this opportunity to thank Professor H. Heyer and Professor H. Morimoto for their careful reading the manuscript and valuable comments on it. I am also thankful to Professor H. Luschgy and Professor D. Mussmann for thei r proposal of wr i ting "the note". I would like to dedicate this note to the memory of my father Eizo.
Download or read book Sampling Source Book written by C L Thomas and published by Elsevier. This book was released on 2013-10-22 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Sampling Source Book is an invaluable guide to the world's literature on sampling and provides a timely and much needed focus on what is a diverse and important subject. Based on an exhaustive search of the world's literature, this index containsbibliographic references to journal articles, patents, conference proceedings, books, technical reports and standards. Details of databases searched and outlines are provided as to how the searches were conducted to facilitate update of the data by usersof the index. The material contained in this source book has been assessed by specialists in sampling operations; assuring relevance of the material included. Comprehensive lists of suppliers of sampling equipment, consultants and professional bodieswith expertise and interests in sampling are also presented.
Download or read book Optimal Sequentially Planned Decision Procedures written by Norbert Schmitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learning from experience, making decisions on the basis of the available information, and proceeding step by step to a desired goal are fundamental behavioural qualities of human beings. Nevertheless, it was not until the early 1940's that such a statistical theory - namely Sequential Analysis - was created, which allows us to investigate this kind of behaviour in a precise manner. A. Wald's famous sequential probability ratio test (SPRT; see example (1.8» turned out to have an enormous influence on the development of this theory. On the one hand, Wald's fundamental monograph "Sequential Analysis" ([Wa]*) is essentially centered around this test. On the other hand, important properties of the SPRT - e.g. Bayes optimality, minimax-properties, "uniform" optimality with respect to expected sample sizes - gave rise to the development of a general statistical decision theory. As a conse quence, the SPRT's played a dominating role in the further development of sequential analysis and, more generally, in theoretical statistics.
Download or read book Selecting Models from Data written by P. Cheeseman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.
Download or read book Random Sums and Branching Stochastic Processes written by Ibrahim Rahimov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this monograph is to show how random sums (that is, the summation of a random number of dependent random variables) may be used to analyse the behaviour of branching stochastic processes. The author shows how these techniques may yield insight and new results when applied to a wide range of branching processes. In particular, processes with reproduction-dependent and non-stationary immigration may be analysed quite simply from this perspective. On the other hand some new characterizations of the branching process without immigration dealing with its genealogical tree can be studied. Readers are assumed to have a firm grounding in probability and stochastic processes, but otherwise this account is self-contained. As a result, researchers and graduate students tackling problems in this area will find this makes a useful contribution to their work.
Download or read book Generalized Gamma Convolutions and Related Classes of Distributions and Densities written by Lennart Bondesson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized Gamma convolutions were introduced by Olof Thorin in 1977 and were used by him to show that, in particular, the Lognormal distribution is infinitely divisible. After that a large number of papers rapidly appeared with new results in a somewhat random order. Many of the papers appeared in the Scandinavian Actuarial Journal. This work is an attempt to present the main results on this class of probability distributions and related classes in a rather logical order. The goal has been to be on a level that is not too advanced. However, since the field is rather technical, most readers will find difficult passages in the text. Those who do not want to visit a mysterious land situated between the land of probability theory and statistics and the land of classical analysis should not look at this work. When some years ago I submitted a survey to a journal it was suggested by the editor, K. Krickeberg, that it should be expanded to a book. However, at that time I was rather reluctant to do so since there remained so many problems to be solved or to be solved in a smoother way than before. Moreover, there was at that time some lack of probabilistic interpretations and applications. Many of the problems are now solved but still it is felt that more applications than those presented in the work could be found.
Download or read book Stochastic Visibility in Random Fields written by Shelemyahu Zacks and published by Springer. This book was released on 2012-12-06 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present monograph is a comprehensive summary of the research on visibility in random fields, which I have conducted with the late Professor Micha Yadin for over ten years. This research, which resulted in several published papers and technical reports (see bibliography), was motivated by some military problems, which were brought to our attention by Mr. Pete Shugart of the US Army TRADOC Systems Analysis Activity, presently called US Army TRADOC Analysis Command. The Director ofTRASANA at the time, the late Dr. Wilbur Payne, identified the problems and encouraged the support and funding of this research by the US Army. Research contracts were first administered through the Office of Naval Research, and subsequently by the Army Research Office. We are most grateful to all involved for this support and encouragement. In 1986 I administered a three-day workshop on problem solving in the area of sto chastic visibility. This workshop was held at the White Sands Missile Range facility. A set of notes with some software were written for this workshop. This workshop led to the incorporation of some of the methods discussed in the present book into the Army simulation package CASTFOREM. Several people encouraged me to extend those notes and write the present monograph on the level of those notes, so that the material will be more widely available for applications.
Download or read book Probability Models and Statistical Analyses for Ranking Data written by Michael A. Fligner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: In June of 1990, a conference was held on Probablity Models and Statisti cal Analyses for Ranking Data, under the joint auspices of the American Mathematical Society, the Institute for Mathematical Statistics, and the Society of Industrial and Applied Mathematicians. The conference took place at the University of Massachusetts, Amherst, and was attended by 36 participants, including statisticians, mathematicians, psychologists and sociologists from the United States, Canada, Israel, Italy, and The Nether lands. There were 18 presentations on a wide variety of topics involving ranking data. This volume is a collection of 14 of these presentations, as well as 5 miscellaneous papers that were contributed by conference participants. We would like to thank Carole Kohanski, summer program coordinator for the American Mathematical Society, for her assistance in arranging the conference; M. Steigerwald for preparing the manuscripts for publication; Martin Gilchrist at Springer-Verlag for editorial advice; and Persi Diaconis for contributing the Foreword. Special thanks go to the anonymous referees for their careful readings and constructive comments. Finally, we thank the National Science Foundation for their sponsorship of the AMS-IMS-SIAM Joint Summer Programs. Contents Preface vii Conference Participants xiii Foreword xvii 1 Ranking Models with Item Covariates 1 D. E. Critchlow and M. A. Fligner 1. 1 Introduction. . . . . . . . . . . . . . . 1 1. 2 Basic Ranking Models and Their Parameters 2 1. 3 Ranking Models with Covariates 8 1. 4 Estimation 9 1. 5 Example. 11 1. 6 Discussion. 14 1. 7 Appendix . 15 1. 8 References.
Download or read book Causation Prediction and Search written by Peter Spirtes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for anyone, regardless of discipline, who is interested in the use of statistical methods to help obtain scientific explanations or to predict the outcomes of actions, experiments or policies. Much of G. Udny Yule's work illustrates a vision of statistics whose goal is to investigate when and how causal influences may be reliably inferred, and their comparative strengths estimated, from statistical samples. Yule's enterprise has been largely replaced by Ronald Fisher's conception, in which there is a fundamental cleavage between experimental and non experimental inquiry, and statistics is largely unable to aid in causal inference without randomized experimental trials. Every now and then members of the statistical community express misgivings about this turn of events, and, in our view, rightly so. Our work represents a return to something like Yule's conception of the enterprise of theoretical statistics and its potential practical benefits. If intellectual history in the 20th century had gone otherwise, there might have been a discipline to which our work belongs. As it happens, there is not. We develop material that belongs to statistics, to computer science, and to philosophy; the combination may not be entirely satisfactory for specialists in any of these subjects. We hope it is nonetheless satisfactory for its purpose.