Download or read book Evolution of Artificial Neural Development written by Gul Muhammad Khan and published by Springer. This book was released on 2017-11-08 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent research on the evolution of artificial neural development, and searches for learning genes. It is fascinating to see how all biological cells share virtually the same traits, but humans have a decided edge over other species when it comes to intelligence. Although DNA decides the form each particular species takes, does it also account for intelligent behaviour in living beings? The authors explore the factors that are perceived as intelligent behaviour in living beings and the incorporation of these factors in machines using genetic programming, which ultimately provides a platform for exploring the possibility of machines that can learn by themselves, i.e. that can “learn how to learn”. The book will be of interest not only to the specialized scientific community pursuing machine intelligence, but also general readers who would like to know more about the incorporation of intelligent behaviour in machines, inspired by the human brain.
Download or read book Evolution of Artificial Neural Development written by Gul Muhammad Khan and published by Springer. This book was released on 2017-10-27 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent research on the evolution of artificial neural development, and searches for learning genes. It is fascinating to see how all biological cells share virtually the same traits, but humans have a decided edge over other species when it comes to intelligence. Although DNA decides the form each particular species takes, does it also account for intelligent behaviour in living beings? The authors explore the factors that are perceived as intelligent behaviour in living beings and the incorporation of these factors in machines using genetic programming, which ultimately provides a platform for exploring the possibility of machines that can learn by themselves, i.e. that can “learn how to learn”. The book will be of interest not only to the specialized scientific community pursuing machine intelligence, but also general readers who would like to know more about the incorporation of intelligent behaviour in machines, inspired by the human brain.
Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Download or read book Growing Adaptive Machines written by Taras Kowaliw and published by Springer. This book was released on 2014-06-04 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that adaptive growth is a means of moving forward. By emulating the biological process of development, we can incorporate desirable characteristics of natural neural systems into engineered designs and thus move closer towards the creation of brain-like systems. The particular focus is on how to design artificial neural networks for engineering tasks. The book consists of contributions from 18 researchers, ranging from detailed reviews of recent domains by senior scientists, to exciting new contributions representing the state of the art in machine learning research. The book begins with broad overviews of artificial neurogenesis and bio-inspired machine learning, suitable both as an introduction to the domains and as a reference for experts. Several contributions provide perspectives and future hypotheses on recent highly successful trains of research, including deep learning, the Hyper NEAT model of developmental neural network design, and a simulation of the visual cortex. Other contributions cover recent advances in the design of bio-inspired artificial neural networks, including the creation of machines for classification, the behavioural control of virtual agents, the desi gn of virtual multi-component robots and morphologies and the creation of flexible intelligence. Throughout, the contributors share their vast expertise on the means and benefits of creating brain-like machines. This book is appropriate for advanced students and practitioners of artificial intelligence and machine learning.
Download or read book Intelligence Emerging written by Keith L. Downing and published by MIT Press. This book was released on 2015-05-29 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: An investigation of intelligence as an emergent phenomenon, integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence. Emergence—the formation of global patterns from solely local interactions—is a frequent and fascinating theme in the scientific literature both popular and academic. In this book, Keith Downing undertakes a systematic investigation of the widespread (if often vague) claim that intelligence is an emergent phenomenon. Downing focuses on neural networks, both natural and artificial, and how their adaptability in three time frames—phylogenetic (evolutionary), ontogenetic (developmental), and epigenetic (lifetime learning)—underlie the emergence of cognition. Integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence, Downing provides a series of concrete examples of neurocognitive emergence. Doing so, he offers a new motivation for the expanded use of bio-inspired concepts in artificial intelligence (AI), in the subfield known as Bio-AI. One of Downing's central claims is that two key concepts from traditional AI, search and representation, are key to understanding emergent intelligence as well. He first offers introductory chapters on five core concepts: emergent phenomena, formal search processes, representational issues in Bio-AI, artificial neural networks (ANNs), and evolutionary algorithms (EAs). Intermediate chapters delve deeper into search, representation, and emergence in ANNs, EAs, and evolving brains. Finally, advanced chapters on evolving artificial neural networks and information-theoretic approaches to assessing emergence in neural systems synthesize earlier topics to provide some perspective, predictions, and pointers for the future of Bio-AI.
Download or read book The Deep Learning Revolution written by Terrence J. Sejnowski and published by MIT Press. This book was released on 2018-10-23 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: How deep learning—from Google Translate to driverless cars to personal cognitive assistants—is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.
Download or read book Artificial Life IV written by Rodney Allen Brooks and published by MIT Press. This book was released on 1994 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together contributions to the Fourth Artificial Life Workshop, held at the Massachusetts Institute of Technology in the summer of 1994.
Download or read book Bio Inspired Artificial Intelligence written by Dario Floreano and published by MIT Press. This book was released on 2023-04-04 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.
Download or read book The Self Assembling Brain written by Peter Robin Hiesinger and published by Princeton University Press. This book was released on 2022-12-13 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In this book, Peter Robin Hiesinger explores historical and contemporary attempts to understand the information needed to make biological and artificial neural networks. Developmental neurobiologists and computer scientists with an interest in artificial intelligence - driven by the promise and resources of biomedical research on the one hand, and by the promise and advances of computer technology on the other - are trying to understand the fundamental principles that guide the generation of an intelligent system. Yet, though researchers in these disciplines share a common interest, their perspectives and approaches are often quite different. The book makes the case that "the information problem" underlies both fields, driving the questions that are driving forward the frontiers, and aims to encourage cross-disciplinary communication and understanding, to help both fields make progress. The questions that challenge researchers in these fields include the following. How does genetic information unfold during the years-long process of human brain development, and can this be a short-cut to create human-level artificial intelligence? Is the biological brain just messy hardware that can be improved upon by running learning algorithms in computers? Can artificial intelligence bypass evolutionary programming of "grown" networks? These questions are tightly linked, and answering them requires an understanding of how information unfolds algorithmically to generate functional neural networks. Via a series of closely linked "discussions" (fictional dialogues between researchers in different disciplines) and pedagogical "seminars," the author explores the different challenges facing researchers working on neural networks, their different perspectives and approaches, as well as the common ground and understanding to be found amongst those sharing an interest in the development of biological brains and artificial intelligent systems"--
Download or read book Evolutionary Approach to Machine Learning and Deep Neural Networks written by Hitoshi Iba and published by Springer. This book was released on 2018-06-15 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields. Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution. The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.
Download or read book Evolutionary Robotics written by Stefano Nolfi and published by MIT Press. This book was released on 2000 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the basic concepts and methodologies of evolutionary robotics, which views robots as autonomous artificial organisms that develop their own skills in close interaction with the environment and without human intervention.
Download or read book Advances in Computational Intelligence written by Joan Cabestany and published by Springer. This book was released on 2011-05-30 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set LNCS 6691 and 6692 constitutes the refereed proceedings of the 11th International Work-Conference on Artificial Neural Networks, IWANN 2011, held in Torremolinos-Málaga, Spain, in June 2011. The 154 revised papers were carefully reviewed and selected from 202 submissions for presentation in two volumes. The first volume includes 69 papers organized in topical sections on mathematical and theoretical methods in computational intelligence; learning and adaptation; bio-inspired systems and neuro-engineering; hybrid intelligent systems; applications of computational intelligence; new applications of brain-computer interfaces; optimization algorithms in graphic processing units; computing languages with bio-inspired devices and multi-agent systems; computational intelligence in multimedia processing; and biologically plausible spiking neural processing.
Download or read book Deep Neural Evolution written by Hitoshi Iba and published by Springer Nature. This book was released on 2020-05-20 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delivers the state of the art in deep learning (DL) methods hybridized with evolutionary computation (EC). Over the last decade, DL has dramatically reformed many domains: computer vision, speech recognition, healthcare, and automatic game playing, to mention only a few. All DL models, using different architectures and algorithms, utilize multiple processing layers for extracting a hierarchy of abstractions of data. Their remarkable successes notwithstanding, these powerful models are facing many challenges, and this book presents the collaborative efforts by researchers in EC to solve some of the problems in DL. EC comprises optimization techniques that are useful when problems are complex or poorly understood, or insufficient information about the problem domain is available. This family of algorithms has proven effective in solving problems with challenging characteristics such as non-convexity, non-linearity, noise, and irregularity, which dampen the performance of most classic optimization schemes. Furthermore, EC has been extensively and successfully applied in artificial neural network (ANN) research —from parameter estimation to structure optimization. Consequently, EC researchers are enthusiastic about applying their arsenal for the design and optimization of deep neural networks (DNN). This book brings together the recent progress in DL research where the focus is particularly on three sub-domains that integrate EC with DL: (1) EC for hyper-parameter optimization in DNN; (2) EC for DNN architecture design; and (3) Deep neuroevolution. The book also presents interesting applications of DL with EC in real-world problems, e.g., malware classification and object detection. Additionally, it covers recent applications of EC in DL, e.g. generative adversarial networks (GAN) training and adversarial attacks. The book aims to prompt and facilitate the research in DL with EC both in theory and in practice.
Download or read book Artificial Intelligence Technologies and the Evolution of Web 3 0 written by Issa, Tomayess and published by IGI Global. This book was released on 2015-02-28 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Web technologies have become a vital element within educational, professional, and social settings as they have the potential to improve performance and productivity across organizations. Artificial Intelligence Technologies and the Evolution of Web 3.0 brings together emergent research and best practices surrounding the effective usage of Web 3.0 technologies in a variety of environments. Featuring the latest technologies and applications across industries, this publication is a vital reference source for academics, researchers, students, and professionals who are interested in new ways to use intelligent web technologies within various settings.
Download or read book Handbook of Neuroevolution Through Erlang written by Gene I. Sher and published by Springer Science & Business Media. This book was released on 2012-11-06 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Neuroevolution Through Erlang presents both the theory behind, and the methodology of, developing a neuroevolutionary-based computational intelligence system using Erlang. With a foreword written by Joe Armstrong, this handbook offers an extensive tutorial for creating a state of the art Topology and Weight Evolving Artificial Neural Network (TWEANN) platform. In a step-by-step format, the reader is guided from a single simulated neuron to a complete system. By following these steps, the reader will be able to use novel technology to build a TWEANN system, which can be applied to Artificial Life simulation, and Forex trading. Because of Erlang’s architecture, it perfectly matches that of evolutionary and neurocomptational systems. As a programming language, it is a concurrent, message passing paradigm which allows the developers to make full use of the multi-core & multi-cpu systems. Handbook of Neuroevolution Through Erlang explains how to leverage Erlang’s features in the field of machine learning, and the system’s real world applications, ranging from algorithmic financial trading to artificial life and robotics.
Download or read book Neural Network Design written by Martin T. Hagan and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Artificial Neural Networks in Biological and Environmental Analysis written by Grady Hanrahan and published by CRC Press. This book was released on 2011-01-18 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originating from models of biological neural systems, artificial neural networks (ANN) are the cornerstones of artificial intelligence research. Catalyzed by the upsurge in computational power and availability, and made widely accessible with the co-evolution of software, algorithms, and methodologies, artificial neural networks have had a profound