EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Evaluation of Salmon Spawning Below the Four Lowermost Columbia River Dams  2004 2005 Annual Report

Download or read book Evaluation of Salmon Spawning Below the Four Lowermost Columbia River Dams 2004 2005 Annual Report written by and published by . This book was released on 2006 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum (Oncorhynchus keta) and fall Chinook (O. tshawytscha) salmon in the lower mainstem Columbia River. Their work supports a larger Bonneville Power Administration (BPA) project aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and fall Chinook salmon populations--both listed as threatened under the Endangered Species Act. Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by biologists from the WDFW in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives Island. Limited spawning ground surveys were conducted in the area around Ives and Pierce islands during 1994 through 1997. Based on these surveys, fall Chinook salmon were believed to be spawning successfully in this area. In addition, chum salmon have been documented spawning downstream of Bonneville Dam. In FY 1999, BPA Project No. 1999-003 was initiated by the WDFW, ODFW, and the USFWS to characterize the variables associated with physical habitat used by mainstem fall Chinook and chum salmon populations and to better understand the effects of hydropower project operations on spawning and incubation. Pacific Northwest National Laboratory was asked to join the study in FY 2000, during which its initial efforts were focused on (1) investigating the interactions between groundwater and surface water near fall Chinook and chum salmon spawning areas and (2) locating and mapping deepwater fall Chinook salmon spawning areas. In FY 2001, an additional task was added to provide support to the WDFW for analysis of juvenile salmon stranding data. The work PNNL has conducted since then continues to address these same three issues. The overall project is subdivided into a series of tasks, with each agency taking the lead on a task; WDFW leads the adult task, ODFW leads the juvenile task, and the USFWS leads the habitat task. All three tasks are designed to complement each other to achieve the overall project goal. Study results from PNNL's work contribute to all three tasks. This report documents the studies and tasks performed by PNNL during FY 2005. Chapter 1 provides a description of the deepwater redd searches conducted adjacent to Pierce and Ives islands and documents the search results and analysis of findings. Chapter 2 documents the collection of data on riverbed and river temperatures, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates. Technical assistance provided to the WDFW in evaluation of stranding data is summarized in Chapter 3.

Book Obtenez le maximum du Canon EOS 5D Mark III

Download or read book Obtenez le maximum du Canon EOS 5D Mark III written by Jacques Mateos and published by . This book was released on 2012 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Le Canon EOS 5D Mark III est un appareil haut de gamme destiné à la fois aux amateurs avertis, aux semi-pros et aux professionnels, commercialisé à partir d'avril 2012 au prix de 3500 euros. Il remplacera progressivement le 5D MK II, sorti en 2008 et coûtant actuellement environ 2500 euros nu. Cet ouvrage est un guide pratique de découverte, de prise en main et d'utilisation du Canon EOS 5D MK III.

Book Evaluation of Salmon Spawning Below Bonneville Dam  2005 2006 Annual Report

Download or read book Evaluation of Salmon Spawning Below Bonneville Dam 2005 2006 Annual Report written by and published by . This book was released on 2007 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Ongoing discussions regarding the minimum and maximum flows will result in optimal spawning habitat usage and survival of embryos of both species. Collection of additional data as part of this project will ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. This is consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Thus, there is a need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. Pacific Northwest National Laboratory was asked to participate in the cooperative study during FY 2000. Since then, we have focused on (1) investigating the interactions between groundwater and surface water near fall Chinook and chum salmon spawning areas; (2) providing in-season hyporheic temperature data and assisting state agencies with emergence timing estimates; (3) locating and mapping deep-water fall Chinook salmon spawning areas; and (4) providing support to the WDFW for analysis of stranding data. Work conducted during FY 2006 addressed these same efforts. This report documents the studies and tasks performed by PNNL during FY 2006. Chapter 1 provides a description of the searches conducted for deepwater redds--adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates and evaluations of redd dewatering. Technical assistance provided to the WDFW and PSMFC in evaluation of stranding data is summarized in Chapter 3.

Book Evaluation of Salmon Spawning Below Bonneville Dam  Annual Report October 2005   September 2006

Download or read book Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2005 September 2006 written by and published by . This book was released on 2007 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Ongoing discussions regarding the minimum and maximum flows will result in optimal spawning habitat usage and survival of embryos of both species. Collection of additional data as part of this project will ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. This is consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Thus, there is a need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. Pacific Northwest National Laboratory was asked to participate in the cooperative study during FY 2000. Since then, we have focused on (1) investigating the interactions between groundwater and surface water near fall Chinook and chum salmon spawning areas; (2) providing in-season hyporheic temperature data and assisting state agencies with emergence timing estimates; (3) locating and mapping deep-water fall Chinook salmon spawning areas; and (4) providing support to the WDFW for analysis of stranding data. Work conducted during FY 2006 addressed these same efforts. This report documents the studies and tasks performed by PNNL during FY 2006. Chapter 1 provides a description of the searches conducted for deepwater redds--adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates and evaluations of redd dewatering. Technical assistance provided to the WDFW and PSMFC in evaluation of stranding data is summarized in Chapter 3.

Book Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2006   September 2007

Download or read book Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2006 September 2007 written by and published by . This book was released on 2008 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: From 1999 through 2007, the Fish and Wildlife Program of the Bonneville Power Administration funded a project to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Data were collected to ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. The projects objectives are consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Because of the influence of mainstem habitat on salmon production, there is a continued need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. During FY 2007, Pacific Northwest National Laboratory focused on (1) locating and mapping deep-water fall Chinook salmon and chum salmon spawning areas, (2) investigating the interaction between groundwater and surface water near fall Chinook and chum salmon spawning areas, and (3) providing in-season hyporheic temperature and water surface elevation data to assist state agencies with emergence timing and redd dewatering estimates. This report documents the studies and tasks performed by PNNL during FY 2007. Chapter 1 provides a description of the searches conducted for deepwater redds-adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates and evaluations of redd dewatering.

Book Quantifying the Behavioral Response of Spawning Chum Salmon to Elevated Discharges from Bonneville Dam  Columbia River

Download or read book Quantifying the Behavioral Response of Spawning Chum Salmon to Elevated Discharges from Bonneville Dam Columbia River written by and published by . This book was released on 2008 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: In unimpounded rivers, Pacific salmon (Oncorhynchus spp.) typically spawn under relatively stable stream flows, with exceptions occurring during periodic precipitation events. In contrast, hydroelectric development has often resulted in an artificial hydrograph characterized by rapid changes in discharge and tailwater elevation that occur on a daily, or even an hourly basis, due to power generation (Cushman 1985; Moog 1993). Consequently, populations of Pacific salmon that are known to spawn in main-stem habitats below hydroelectric dams face the risks of changing habitat suitability, potential redd dewatering, and uncertain spawning success (Hamilton and Buell 1976; Chapman et al. 1986; Dauble et al. 1999; Garland et al. 2003; Connor and Pflug 2004; McMichael et al. 2005). Although the direct effects of a variable hydrograph, such as redd dewatering are apparent, specific effects on spawning behavior remain largely unexplored. Chum salmon (O. keta) that spawn below Bonneville Dam on the Columbia River are particularly vulnerable to the effects of water level fluctuations. Although chum salmon generally spawn in smaller tributaries (Johnson et al. 1997), many fish spawn in main-stem habitats below Bonneville Dam near Ives Island (Tomaro et al. 2007; Figure 1). The primary spawning area near Ives Island is shallow and sensitive to changes in water level caused by hydroelectric power generation at Bonneville Dam. In the past, fluctuating water levels have dewatered redds and changed the amount of available spawning habitat (Garland et al. 2003). To minimize these effects, fishery managers attempt to maintain a stable tailwater elevation at Bonneville Dam of 3.5 m (above mean sea level) during spawning, which ensures adequate water is provided to the primary chum salmon spawning area below the mouth of Hamilton Creek (Figure 1). Given the uncertainty of winter precipitation and water supply, this strategy has been effective at restricting spawning to a specific riverbed elevation and providing minimum spawning flows that have the greatest chance of being maintained through egg incubation and fry emergence. However, managing the lower Columbia River for a stable tailwater elevation does not provide much operational flexibility at Bonneville Dam, which has little storage capacity. When river discharges increase due to rain events, the traditional approach has been to pass excess water at night to maintain stable tailwater elevations during the daytime. The underlying assumption of this strategy, referred to as reverse load following, is that fish do not spawn at night. However, Tiffan et al. (2005) showed that this assumption is false by documenting nighttime spawning by chum salmon in the Ives Island area. Similarly, McMichael et al. (2005) reported nighttime spawning by Chinook salmon (O. tshawytscha) in the Columbia River, indicating that diel spawning may be a common occurrence in Pacific salmon. During the latter portion of the chum spawning period in December 2003 and 2004, discharges from Bonneville Dam increased from an average of 3,398 m3/s (tailwater elevation (almost equal to) 3.5 m above mean sea level) during the day to over 5,664 m3/s (tailwater elevation (almost equal to) 5.1 m) at night, with peak discharges of 7,080 m3/s (tailwater elevation (almost equal to) 6.1 m). This caused concern among fishery managers regarding the potential effects of these high discharges on this population of spawning chum salmon, which is listed under the Endangered Species Act (National Oceanic and Atmospheric Administration 1999). We hypothesized that increased water velocities associated with elevated tailwaters might alter chum salmon spawning behavior if water velocities at redd locations increased beyond the range of suitability (>0.8 m/s; Salo 1991). In 2005, we investigated the movement and behavioral responses of spawning chum salmon at Ives Island to increased tailwater elevations at Bonneville Dam. We used acoustic telemetry to determine if the higher velocities associated with increased tailwater elevations caused fish to leave their redds. We related the duration fish were away from redds and the distances moved to water velocities estimated from a two-dimensional hydrodynamic model. Finally, we described specific changes in spawning behavior (e.g., nest digging; swimming activity) during elevated-tailwater tests using a dual-frequency identification sonar (DIDSON).

Book Re introduction of Lower Columbia River Chum Salmon Into Duncan Creek

Download or read book Re introduction of Lower Columbia River Chum Salmon Into Duncan Creek written by Todd Hillson and published by . This book was released on 2002 with total page 57 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Survival Estimates for the Passage of Spring Migrating Juvenile Salmonids Through Snake and Columbia River Dams and Reservoirs  2004 2005 Annual Report

Download or read book Survival Estimates for the Passage of Spring Migrating Juvenile Salmonids Through Snake and Columbia River Dams and Reservoirs 2004 2005 Annual Report written by Steven G. Smith and published by . This book was released on 2005 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2004, the National Marine Fisheries Service and the University of Washington completed the twelfth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 19,621 hatchery steelhead, 8,128 wild steelhead, and 9,227 wild yearling Chinook salmon at Lower Granite Dam. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2004 were to (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon O. tshawytscha and steelhead O. mykiss; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2004 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures; details on methodology and statistical models used are provided in previous reports cited here. Survival and detection probabilities were estimated precisely for most of the 2004 yearling Chinook salmon and steelhead migrations. Hatchery and wild fish were combined in some of the analyses. Overall, the percentages for combined release groups used in survival analyses were 68% hatchery-reared yearling Chinook salmon and 32% wild. For steelhead, the overall percentages were 73% hatchery-reared and 27% wild. Estimated survival from the tailrace of Lower Granite Dam to the tailrace of Little Goose Dam averaged 0.923 for yearling Chinook salmon and 0.860 for steelhead. Respective average survival estimates for yearling Chinook salmon and steelhead were 0.875 and 0.820 from Little Goose Dam tailrace to Lower Monumental Dam tailrace; 0.818 and 0.519 from Lower Monumental Dam tailrace to McNary Dam tailrace (including passage through Ice Harbor Dam); and 0.809 and 0.465 from McNary Dam tailrace to John Day Dam tailrace. Survival for yearling Chinook salmon from John Day Dam tailrace to Bonneville Dam tailrace (including passage through The Dalles Dam) was 0.735. We were unable to estimate survival through this reach for steelhead during 2004 because too few fish were detected at Bonneville Dam due to operation of the new corner collector at the second powerhouse. Combining average estimates from the Snake River smolt trap to Lower Granite Dam, from Lower Granite Dam to McNary Dam, and from McNary Dam to Bonneville Dam, estimated annual average survival through the entire hydropower system from the head of Lower Granite reservoir to the tailrace of Bonneville Dam (eight projects) was 0.353 (s.e. 0.045) for Snake River yearling Chinook salmon. We could not empirically estimate survival through the entire system for steelhead in 2004 because of low detection rates for this species at Bonneville Dam. For yearling spring Chinook salmon released in the Upper Columbia River, estimated survival from point of release to McNary Dam tailrace was 0.484 (s.e. 0.005) for fish released from Leavenworth Hatchery, 0.748 (s.e. 0.015) for fish released from Entiat Hatchery, 0.738 (s.e. 0.036) for fish released from Winthrop Hatchery, and 0.702 (s.e. 0.048) and 0.747 (s.e.0.047) for those from Methow Hatchery, Chewuch Pond and Twisp Pond, respectively. Using pooled data, estimated survival for these groups was 0.741 (s.e. 0.038) from McNary Dam tailrace to John Day tailrace and 0.840 (s.e. 0.111) from John Day Dam tailrace to Bonneville Dam tailrace. For 13 groups of steelhead released in the Upper Columbia River, estimated survival from point of release to McNary Dam tailrace ranged from 0.510 (s.e. 0.025) for fish released from Wells Hatchery in the Similkameen River (507 km from McNary Dam) to 0.293 (s.e. 0.022) for fish released from East Bank Hatchery into Nason Creek (373 km from McNary Dam). Using pooled data, estimated survival for these groups was 0.786 (s.e. 0.059) from McNary Dam tailrace to John Day tailrace and 0.620 (s.e. 0.264) from John Day Dam tailrace to Bonneville Dam tailrace.

Book Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon  Oncorhynchus Tshawytscha   Final Report

Download or read book Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon Oncorhynchus Tshawytscha Final Report written by and published by . This book was released on 2009 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found that this river channel classification system was a good predictor at the scale of a river reach ((almost equal to)1 km) of where fall Chinook salmon would spawn. Using this two-dimensional river channel index, we selected study areas that were representative of the geomorphic classes. A total of nine study sites distributed throughout the middle 27 km of the Reach (study area) were investigated. Four of the study sites were located between river kilometer 575 and 580 in a section of the river where fall Chinook salmon have not spawned since aerial surveys were initiated in the 1940s; four sites were located in the spawning reach (river kilometer [rkm] 590 to 603); and one site was located upstream of the spawning reach (rkm 605).

Book Population Viability Analysis

    Book Details:
  • Author : Steven R. Beissinger
  • Publisher : University of Chicago Press
  • Release : 2002-05-04
  • ISBN : 0226041786
  • Pages : 594 pages

Download or read book Population Viability Analysis written by Steven R. Beissinger and published by University of Chicago Press. This book was released on 2002-05-04 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many of the world's leading conservation and population biologists evaluate what has become a key tool in estimating extinction risk and evaluating potential recovery strategies - population viability analysis, or PVA.

Book World Atlas of Seagrasses

    Book Details:
  • Author : Frederick T. Short
  • Publisher : Univ of California Press
  • Release : 2003
  • ISBN : 9780520240476
  • Pages : 336 pages

Download or read book World Atlas of Seagrasses written by Frederick T. Short and published by Univ of California Press. This book was released on 2003 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seagrasses are a vital and widespread but often overlooked coastal marine habitat. This volume provides a global survey of their distribution and conservation status.

Book Public Participation in the Governance of International Freshwater Resources

Download or read book Public Participation in the Governance of International Freshwater Resources written by Carl E. Bruch and published by United Nations University Press. This book was released on 2005 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bruch, a senior attorney of the Environmental Law Institute, presents work from an April 2003 symposium co-sponsored by the Environmental Law Institute, the United Nations University, and other institutions. Papers from the symposium identify innovative approaches in watershed management and look at political, linguistic, legal, cultural, and geogr

Book Fishes of the World

    Book Details:
  • Author : Joseph S. Nelson
  • Publisher : John Wiley & Sons
  • Release : 2016-04-25
  • ISBN : 1119220823
  • Pages : 752 pages

Download or read book Fishes of the World written by Joseph S. Nelson and published by John Wiley & Sons. This book was released on 2016-04-25 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your knowledge of fishes to the next level Fishes of the World, Fifth Edition is the only modern, phylogenetically based classification of the world’s fishes. The updated text offers new phylogenetic diagrams that clarify the relationships among fish groups, as well as cutting-edge global knowledge that brings this classic reference up to date. With this resource, you can classify orders, families, and genera of fishes, understand the connections among fish groups, organize fishes in their evolutionary context, and imagine new areas of research. To further assist your work, this text provides representative drawings, many of them new, for most families of fishes, allowing you to make visual connections to the information as you read. It also contains many references to the classical as well as the most up-to-date literature on fish relationships, based on both morphology and molecular biology. The study of fishes is one that certainly requires dedication—and access to reliable, accurate information. With more than 30,000 known species of sharks, rays, and bony fishes, both lobe-finned and ray-finned, you will need to master your area of study with the assistance of the best reference materials available. This text will help you bring your knowledge of fishes to the next level. Explore the anatomical characteristics, distribution, common and scientific names, and phylogenetic relationships of fishes Access biological and anatomical information on more than 515 families of living fishes Better appreciate the complexities and controversies behind the modern view of fish relationships Refer to an extensive bibliography, which points you in the direction of additional, valuable, and up-to-date information, much of it published within the last few years Fishes of the World, Fifth Edition is an invaluable resource for professional ichthyologists, aquatic ecologists, marine biologists, fish breeders, aquaculturists, and conservationists.

Book Water Management at Abandoned Flooded Underground Mines

Download or read book Water Management at Abandoned Flooded Underground Mines written by Christian Wolkersdorfer and published by Springer Science & Business Media. This book was released on 2008-02-01 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the processes related to mine abandonment from a hydrogeological perspective and provides a comprehensive presentation of water management and innovative tracer techniques for flooded mines. After an introduction to the relevant hydrogeochemical processes the book gives detailed information about mine closure procedures. The book also includes case studies and hints, and some new methodologies for conducting tracer tests in flooded mines.

Book Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province

Download or read book Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province written by Bill Bonnichsen and published by Idaho Geological Survey. This book was released on 2002 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Floods and Droughts in the Tulare Lake Basin

Download or read book Floods and Droughts in the Tulare Lake Basin written by John T. Austin and published by . This book was released on 2013-01-01 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mammals of South America  Volume 2

Download or read book Mammals of South America Volume 2 written by James L. Patton and published by University of Chicago Press. This book was released on 2015-03-09 with total page 1363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second installment in a planned three-volume series, this book provides the first substantive review of South American rodents published in over fifty years. Increases in the reach of field research and the variety of field survey methods, the introduction of bioinformatics, and the explosion of molecular-based genetic methodologies have all contributed to the revision of many phylogenetic relationships and to a doubling of the recognized diversity of South American rodents. The largest and most diverse mammalian order on Earth—and an increasingly threatened one—Rodentia is also of great ecological importance, and Rodents is both a timely and exhaustive reference on these ubiquitous creatures. From spiny mice and guinea pigs to the oversized capybara, this book covers all native rodents of South America, the continental islands of Trinidad and Tobago, and the Caribbean Netherlands off the Venezuelan coast. It includes identification keys and descriptions of all genera and species; comments on distribution; maps of localities; discussions of subspecies; and summaries of natural, taxonomic, and nomenclatural history. Rodents also contains a detailed list of cited literature and a separate gazetteer based on confirmed identifications from museum vouchers and the published literature.