EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Evaluation of Long Term Performance of High Recycled Asphalt Pavement  RAP  Mixes and Development of Models for RAP Binder Contribution and Aging

Download or read book Evaluation of Long Term Performance of High Recycled Asphalt Pavement RAP Mixes and Development of Models for RAP Binder Contribution and Aging written by Logan Dale Cantrell and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recycled asphalt pavement (RAP) is one of the most recycled materials in the United States. It provides many environmental and economic benefits, but RAP usage has stagnated recently. The advancement in rejuvenators and performance testing renews the ability to increase RAP levels and address cracking concerns. This study investigated the use of RAP in asphalt concrete and if it could be increased beyond current limits without adversely affecting long-term performance. These results provide evidence and tools for increasing RAP both in the mix design and production stages. Additionally, the models developed can make implementing performance testing in production much more feasible. Field constructability and performance were first evaluated to ensure current high RAP (HR) mixes are performing adequately. This systematic approach found that HR mixes performed equal or better than low RAP (LR) typical mixes with lower density deviation and less longitudinal cracking. Then, super high RAP (SHR) mixes, with RAP levels up to 100%, were designed using current WSDOT volumetric design standards. SHR mixes were statistically similar in rutting and cracking performance to typical 20% RAP mixes except for polymer modified binder mixes with RAP levels above 80% due to an overall reduction in polymer and degradation of polymer cross-linking. Cracking performance could be improved with the slight addition of a virgin binder. With SHR mixes showing potential, models based on mix mechanics were developed to aid in implementation. First, a model to predict RAP binder contribution (PRBC) was developed based on mix performance testing. Lab results showed that the mix with a neat virgin binder with softer RAP contributed more than the modified virgin binder with stiffer RAP. The model was then adjusted for use with plant mixes and showed HR mixes, and V binders with more PRBC than LR mixes and H binders. An aging model was then developed to predict cracking performance as a mix aged. Next, a logarithmic-based model was chosen to predict aged CTIndex results, which characterizes both oxidative aging and polymer degradation. Finally, a 3D model was created to predict the effects of both RAP addition and aging on CTIndex samples.

Book Long Term Effectiveness of Recycling Agents to Improve Performance Properties of Asphalt Concrete

Download or read book Long Term Effectiveness of Recycling Agents to Improve Performance Properties of Asphalt Concrete written by Mahsa Tofighian and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recycled materials such as reclaimed asphalt pavement (RAP) have been incorporated into asphalt mixtures for many years. However, their usage has increased over time as they are seen as a way to reduce the cost of asphalt mixtures, save energy, and protect the environment. Similarly, there has been a growing focus on the utilization of recycled asphalt shingles (RAS) in asphalt mixtures, a pursuit undertaken by various state highway agencies. However, unless appropriate precautions are taken, as the proportion of RAP and RAS in the asphalt mixture is raised, the mixture becomes more brittle, leading to a higher risk of cracking and raveling in the asphalt pavement. Furthermore, the mixture becomes less workable and more challenging to compact in the field, increasing the potential for premature field failure. One strategy to incorporate more RAP and RAS into asphalt mixtures involves the use of specialized recycling agents (RAs), known as rejuvenating agents. Over time, asphalt mixtures undergo aging during construction and over the extended service life of asphalt pavements, resulting in the oxidation of the mix and the loss of a significant portion of the maltenes in the binder composition. Maltenes contribute to the softening effect of the binder, and these recycling agents, when used appropriately, are expected to compensate for this reduction in maltenes. The ultimate result of this rebalancing of components is the softening of the aged binder and an improvement in its resistance to cracking. This study investigates the long-term impact of bio-based and petroleum-based recycling agents (RA's) on recycled asphalt binders with varying levels of reclaimed asphalt pavement (RAP) and reclaimed asphalt shingles (RAS) content, specifically low (15%) and high (30%) RAP content and 0% and 5% RAS content. The rejuvenated binders underwent short-term and long-term aging through the use of a Rolling Thin Film Oven (RTFO) and Pressure Aging Vessel (PAV), respectively. The performance characteristics of these modified binders at various aging stages were assessed using a dynamic shear rheometer (DSR) and bending beam rheometer (BBR). The study revealed that all RA's used in this research maintained their effectiveness even after long-term aging, though the degree of effectiveness varied. Additionally, the results indicated that the petroleum-based RA required a higher dosage to achieve the same effect as the bio-based RA's. The findings from this research also demonstrated that when rejuvenators are added to mixtures with a high RAP content or a combination of RAP and RAS, the mixture's performance is enhanced in terms of low-temperature cracking and fatigue cracking. Nevertheless, it is crucial to extend this work to field pilot projects to ensure the effective application of these rejuvenating products.

Book Research on High RAP Mixtures with Rejuvenator field Implementation

Download or read book Research on High RAP Mixtures with Rejuvenator field Implementation written by Nitish R. Bastola and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Rejuvenating Agents (RAs), as Recycled Asphalt Pavement (RAP) modifiers, has been increasing over the past years. However, the field performance of asphalt mixtures containing high-RAP materials and modified with RAs has raised some concerns regarding the long-term performance of RAs. This study evaluated the laboratory and field performance of high-RAP mixtures with and without bio-oil RA. Three sets of plant-produced specimens were collected: 1) laboratory-compacted; 2) field-compacted and cored after paving; and 3) field-compacted and cored after one and two years. The Hamburg Wheel Tracking (HWT) test was used to evaluate the specimens' resistance to rutting and moisture damage. The Semi-Circular Bending (SCB) fracture test was performed to examine the specimens' resistance to cracking. The results showed that using the bio-oil RA resulted in an increase in cracking resistance and a decrease in rutting and moisture damage resistance of the RAP-blended mixtures compacted in the laboratory. However, after one and two years of exposure to the environmental conditions and traffic loads, the effect of RA on moisture and rutting susceptibility of the mixtures reduced. The cracking resistance of specimens, estimated by Flexibility Index (FI) and Cracking Resistance Index (CRI), and Tukey's Honestly Significant Difference (HSD) test results implied that the bio-oil RA used in this study could not provide long-term improvement for the RAP-blended mixtures in the laboratory-aging and field-aging conditions. The field performance observations showed that the use of the bio-oil RA in the second layer might have indirectly resulted in more cracks (fatigue and thermal) and ruts in the surface layer.(Page i)

Book Evaluating the Effects of Recycling Agents on Asphalt Mixtures with High RAS and RAP Binder Ratios

Download or read book Evaluating the Effects of Recycling Agents on Asphalt Mixtures with High RAS and RAP Binder Ratios written by Amy Epps Martin and published by . This book was released on 2020 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: "More than 90 percent of highways and roads in the United States are built using hot-mix asphalt (HMA) or warm-mix asphalt (WMA) mixtures, and these mixtures now recycle more than 99 percent of some 76.2 million tons of reclaimed asphalt pavement (RAP) and about 1 million tons of recycled asphalt shingles (RAS) each year. Cost savings in 2017 totaled approximately $2.2 billion with these recycled materials replacing virgin materials. The TRB National Cooperative Highway Research Program's NCHRP Research Report 927: Evaluating the Effects of Recycling Agents on Asphalt Mixtures with High RAS and RAP Binder Ratios presents an evaluation of how commercially available recycling agents affect the performance of asphalt mixtures incorporating RAP and RAS at high recycled binder ratios."--

Book Superpave Mix Design

    Book Details:
  • Author : Asphalt Institute
  • Publisher :
  • Release : 2001-01-01
  • ISBN : 9781934154175
  • Pages : 102 pages

Download or read book Superpave Mix Design written by Asphalt Institute and published by . This book was released on 2001-01-01 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Interaction Between New and Age hardened Binders in Asphalt Mixes Containing High Quantities of Reclaimed Asphalt Pavement and Reclaimed Asphalt Shingles

Download or read book Interaction Between New and Age hardened Binders in Asphalt Mixes Containing High Quantities of Reclaimed Asphalt Pavement and Reclaimed Asphalt Shingles written by Yuan He and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As virgin pavement material sources become scarcer and costlier the use of higher quantities of reclaimed asphalt pavement (RAP) and reclaimed asphalt shingles (RAS) in the production of new asphalt mixes becomes increasingly desirable. RAP/RAS binder in the mix has different levels of aging. Through oxidation, the binder becomes stiffer and more rigid than virgin binder, and thus results in a pavement material that is more brittle and susceptible to fatigue and thermal cracking. The purpose of this dissertation study was to investigate the interactions between new and age binders and evaluate asphalt mixes performance. A major concern associated with the use of high percentages of RAP and/or RAS is the level of blending between virgin and age-hardened binders, because the performance of the mix can be highly influenced by the properties of the composite binder. The blending between new binder and age-hardened RAP binder can be explained through diffusion mechanisms. This research used asphalt binder testing and diffusion and aging theory to investigate the evolution of blending between virgin and RAP binders during asphalt mix production, storage, and placement. The rheological properties of a two-layer asphalt binder sample composed of virgin and simulated RAP binder were measured using a dynamic shear rheometer (DSR) after conditioning following hot mix asphalt (HMA) and warm mix asphalt (WMA) time-temperature paths during mixing and placement. The diffusion and aging coefficients for the composite binder were estimated by comparing measured shear stiffness values with those predicted using a diffusion model and considering asphalt binder aging over time. The diffusion model is solved numerically based on the finite control volume approach. Results show that the HMA results in nearly full blending of the new and aged binders following the time-temperature paths used in this study; while the WMA results in only partial blending. Traditionally, the properties of blended binders in asphalt mixes containing RAP and RAS are evaluated through rheological testing of the binder extracted and recovered from a mix. However, this approach has long been criticized for being labor intensive, for potentially altering the chemistry of the binder and consequently changing the binder rheology, for forcing blending of binders that may not have been present in the mix, and for creating hazardous material disposal issues. The research presented in this dissertation proposes an alternative approach for characterizing blended binders by testing the linear viscoelastic properties of a fine aggregate matrix (FAM) asphalt mix using a torsion bar fixture in a DSR. A procedure has been developed for preparation and testing of small FAM cylindrical FAM specimens. The results demonstrated that this testing is sensitive to FAM mixes made of different virgin binders, RAP/RAS contents, with and without rejuvenating agent. More importantly, FAM mix testing shows similar results as that from DSR binder testing and full mix testing in terms of rankings of master curves and Black diagrams. Statistical analysis (ANOVA) on stiffness values from FAM testing also provides the same conclusion to that at binder and mix levels. Therefore, FAM approach has the potential to be used as a substitute to stiffness testing for mix comparison purposes. It is also a less expensive and more efficient testing approach than the full mix testing.The combined effect of RAP, RAS, and different virgin binder sources and grades on performance of the blended binders and asphalt mixes was also investigated. Previous studies have indicated that RAP, RAS, and virgin binder grades each has certain effects on performance of the mix. The addition of RAP/RAS undermines fatigue and thermal performance and improves rutting resistance. The virgin binder grade should be carefully chosen based on the percentages of RAP/RAS in the mix. Results from unconfined RLT appears to show that reducing the binder grade when using more than 25 percent RAP results in rutting performance similar to the original grade. Therefore, it is likely safe for high temperatures if the binder grade is reduced to meet the low and intermediate temperature requirements. Asphalt binders contain different organic molecules, and thus their chemical compositions vary according to the source of the oil used in their production. Virgin binders from different sources blend differently with the age-harden oxidized binder in RAP/RAS. Therefore, depending on the level of blending between virgin and oxidized binders, the performance of the mixes could vary substantially. Findings from this work indicated that virgin binder source had some effect on the blended materials. Additional research that came from the testing approaches to complete the investigation of RAP/RAS with this dissertation were also investigated. All the asphalt mixes used in this study were designed following Caltrans modified Superpave mix design procedure and tested using an Asphalt Mixture Performance Tester (AMPT). The effects of specimen preparation variables in terms of compaction method, compaction level, test temperature, stress state, and deformation measurement location when using the AMPT to predict mix stiffness and permanent deformation were evaluated. The best approach using Superpave testing equipment that appears to best characterize expected rutting performance as defined by previous calibrated RSCH results were also investigated.

Book Perform an Investigation of the Effects of Increased Reclaimed Asphalt Pavement  RAP  Levels in Dense Graded Friction Courses

Download or read book Perform an Investigation of the Effects of Increased Reclaimed Asphalt Pavement RAP Levels in Dense Graded Friction Courses written by Reynaldo Roque and published by . This book was released on 2015 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Performance Evaluation of Warm Mix Recycled Asphalt Binders After Long Term Aging

Download or read book Performance Evaluation of Warm Mix Recycled Asphalt Binders After Long Term Aging written by Qiang Li and published by . This book was released on 2019 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study evaluates the pavement performance evolution of warm-mix recycled asphalt binders during the secondary service period. Warm-mix recycled asphalt binders with various long-term aging levels and recycling plans were produced by the laboratory simulation method. Conventional physical properties tests, the dynamic shear rheometer test, and the bending beam rheometer test were conducted to measure the performance of recycled binders. Effects of the aging level and recycling plan on the resistance to rutting, fatigue cracking, and low temperature cracking were investigated by statistical methods. It was found that after secondary long-term aging, recycled binders are more resistant to rutting, while they are less resistant to fatigue and low temperature cracking. The modified aging kinetic model can be used to accurately characterize the effect of secondary aging time on rutting or fatigue factors for recycled binders. The resistance of aged binders to fatigue and low temperature cracking is obviously improved by adding the warm mix asphalt additive. By comparison, using styrene butadiene rubber latex enhances the binder performance in almost all aspects. The aging level has a more significant effect than the recycling plan for all performance parameters.

Book Hot mix Asphalt Mixtures

Download or read book Hot mix Asphalt Mixtures written by and published by . This book was released on 1999 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Evaluating the Effect of High RAP Content on Asphalt Mixtures and Binders Fatigue Behavior

Download or read book Evaluating the Effect of High RAP Content on Asphalt Mixtures and Binders Fatigue Behavior written by Umme Amina Mannan and published by . This book was released on 2018 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the main concerns with the application of reclaimed asphalt pavement (RAP) in the asphalt concrete pavement is fatigue cracking due to the stiffness increase with the addition of aged and stiff RAP binder. The purpose of this study is to evaluate fatigue performance of asphalt binder and mixtures with different RAP percentages (0, 15, 25, 35 and 40 %). Among these, 35 and 40 % RAP mixes are considered as high RAP content. This study describes the results of laboratory fatigue response of asphalt mixtures and extracted binders containing RAP to define the effect of RAP on the fatigue performance. To achieve this objective, mixes and binders were tested using the beam fatigue test and the time-sweep test, respectively. Test results were analyzed using two different fatigue approaches, reduction in stiffness and dissipated energy criteria. Results showed that a higher initial stiffness and initial dissipated energy initiate the fatigue failure faster. Since both binders and mixes show an increase in the stiffness and energy consumed per loading cycle with the addition of RAP, resulting mixes containing higher RAP have a very short fatigue life. Also, the fatigue endurance limit decreases drastically with the addition of RAP in the mix. The results comparing two different RAP sources showed that the RAP source has more prominent effect on the mix fatigue performance than the binder fatigue performance. Finally, the traditional fatigue life prediction model is modified to incorporate the effect of RAP in the fatigue equation. The modified regression model predicted reasonable fatigue life of the mixture with a coefficient of determination (R2) close to 1. The measured and predicted fatigue life results were found close to each other for both mix and binder containing RAP.

Book Investigation of Binder Aging and Mixture Performance in Service  Reclaimed Asphalt Pavement Mixtures

Download or read book Investigation of Binder Aging and Mixture Performance in Service Reclaimed Asphalt Pavement Mixtures written by Stacey D. Diefenderfer and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2007, the Virginia Department of Transportation piloted a specification allowing up to 30% reclaimed asphalt pavement (RAP) in certain dense-graded asphalt surface mixtures while changing virgin binder grade requirements. The change affected only mixtures requiring an end binder grade of either PG 64-22 or PG 70-22. For mixtures specifying PG 64-22 binder, the virgin binder grade at RAP contents of 30% or less was no longer required to change. For mixtures specifying PG 70-22 binder, the virgin binder grade at RAP contents of 21% to 30% was no longer required to change from PG 64-22 to PG 64-28. Prior to this, both types of surface mixtures were allowed to contain only up to 20% RAP before binder grade adjustments were required. An initial laboratory study of mixtures produced under the pilot specification indicated that there were no significant differences for fatigue, rutting, and susceptibility to moisture between the higher content (21% to 30%) RAP mixtures and comparison mixtures (20% RAP or less). The current study evaluated the in-service performance of these mixtures after approximately 7 years and encompassed field visits and a laboratory investigation of a sample of 23 in-service pavements used in the initial laboratory evaluation. Cores were collected from each site and used to evaluate the binder and mixture properties. These data were compared to data from the original construction, when available, to assess the changes in the mixtures over time. Historical performance and maintenance data were also collected and evaluated to investigate the long-term performance characteristics of the sites. Laboratory testing, including dynamic modulus determination, repeated load permanent deformation analysis, and extracted binder grading and analysis, consistently showed no trends in the results with regard to RAP content. Overlay test results were influenced by more than just RAP (air-void content, etc.), and therefore no trend directly related to RAP content was shown. No trends in field performance could be determined because of the underlying structural conditions. Individual locations were found to show better or worse pavement performance, but this was attributed primarily to structural differences in the pavements and preexisting conditions. Surface deterioration observed in numerous test sections included fatigue cracking, longitudinal cracking, transverse cracking, raveling, and potholes. Binder analysis indicated that depth within a layer (in this case, top half versus bottom half) significantly affects binder properties, with stiffness decreasing with depth. However, increasing RAP contents appeared to mitigate the differences between the top half and bottom half of layers, possibly because of the preexisting aged composition of the RAP and its influence on the virgin binder properties.

Book Recycling Materials for Highways

    Book Details:
  • Author : National Research Council (U.S.). Transportation Research Board
  • Publisher : Transportation Research Board National Research
  • Release : 1978
  • ISBN :
  • Pages : 64 pages

Download or read book Recycling Materials for Highways written by National Research Council (U.S.). Transportation Research Board and published by Transportation Research Board National Research. This book was released on 1978 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This synthesis will be of special interest and usefulness to design engineers, materials technologists, and others seeking information on the potential use of recycled materials in design, construction, rehabilitation, and maintenance of pavements, bases, and other components of the highway system. Detailed information is presented on procedures for pavement recycling."--Avant-propos.

Book Development of Quality Standards for Inclusion of High Recycled Asphalt Pavement Content in Asphalt Mixtures

Download or read book Development of Quality Standards for Inclusion of High Recycled Asphalt Pavement Content in Asphalt Mixtures written by Hosin "David" Lee and published by . This book was released on 2015 with total page 62 pages. Available in PDF, EPUB and Kindle. Book excerpt: To conserve natural resources and energy, the amount of recycled asphalt pavement has been steadily increasing in the construction of asphalt pavements. The objective of this study is to develop quality standards for inclusion of high RAP content. To determine if the higher percentage of RAP materials can be used on Iowa's state highways, three test sections with target amounts of RAP materials of 30%, 35% and 40% by weight were constructed on Highway 6 in Iowa City. To meet Superpave mix design requirements for mixtures with high RAP contents, it was necessary to fractionate the RAP materials. Three test sections with actual RAP materials of 30.0%, 35.5% and 39.2% by weight were constructed and the average field densities from the cores were measured as 95.3%, 94.0%, and 94.3%, respectively. Field mixtures were compacted in the laboratory to evaluate moisture sensitivity using a Hamburg Wheel Tracking Device. After 20,000 passes, rut depths were less than 3mm for mixtures obtained from three test sections. The binder was extracted from the field mixtures from each test section and tested to identify the effects of RAP materials on the performance grade of the virgin binder. Based on Dynamic Shear Rheometer and Bending Beam Rheometer tests, the virgin binders (PG 64-28) from test sections with 30.0%, 35.5% and 39.2% RAP materials were stiffened to PG 76-22, PG 76-16, and PG 82-16, respectively. The Semi-Circular Bending (SCB) test was performed on laboratory compacted field mixtures with RAP amounts of 30.0%, 35.5% and 39.2% at two different temperatures of -18 and -30 °C. As the test temperature decreased, the fracture energy decreased and the stiffness increased. As the RAP amount increased, the stiffness increased and the fracture energy decreased. Finally, a condition survey of the test sections was conducted to evaluate their short-term pavement performance and the reflective transverse cracking did not increase as RAP amount was increased from 30.0% to 39.2%.

Book Fundamental Evaluation of the Interaction Between RAS RAP and Virgin Asphalt Binders

Download or read book Fundamental Evaluation of the Interaction Between RAS RAP and Virgin Asphalt Binders written by Munir D. Nazzal and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive laboratory testing program was conducted in this research project to examine the blending between reclaimed asphalt pavement (RAP)/recycled asphalt shingles (RAS) and virgin asphalt binders and to evaluate the factors that may affect fatigue and low-temperature cracking as well as moisture-induced damage in asphalt mixtures prepared using these materials. This project included two parts: a binder study and a mixture study. In the binder study, atomic force microscopy (AFM) was utilized to characterize the micromechanical properties of the interfacial zone that develops between the RAP/RAS binders and the virgin asphalt binders. Three virgin asphalt binders with different performance grades (PG 58-28, PG 64-28, and PG 64-22), three RAP sources, as well as manufacturing waste and tear-off RAS were used in this project. A new sample-preparation procedure was developed to simulate the blending between the RAS/RAP and the virgin asphalt binders that occurs during asphalt mixture production. The micro-structure, stiffness and the adhesive properties along the blending zone were evaluated for different combinations of RAP/RAS binders and virgin binders. In the mixture study, several asphalt mixtures were used to evaluate the effect of the incorporation of RAP and/or RAS on the mix performance, including a control mixture (no RAP or RAS), a mixture containing 30% RAP, a mixture containing 5% tear-off RAS, and a mixture containing 20% RAP and 3% tear-off RAS. All mixtures were designed to meet ODOT specifications for Item 442 (Superpave) Type A for heavy traffic intermediate course asphalt mixes. The resistance of the asphalt mixtures to fatigue cracking was evaluated using the semi-circular bend (SCB) and the indirect tensile strength (IDT) tests. The SCB test was performed using the Illinois Method and the Louisiana Method. In addition the potential for low-temperature cracking was evaluated using the asphalt concrete cracking device (ACCD), and the susceptibility of the asphalt mixtures to moisture-induced damage was evaluated using the AASHTO T 283 (modified Lottman) test. The AFM test results indicated that blending occurred to a varying degree between the RAP binders and the virgin binders for all RAP-virgin binder combinations. The average modulus of the blending zone depended on the properties of the RAP and the virgin binders. For all binders, a reduction in the adhesive bonding energy was also observed in the blending zone due to the presence of RAP. However, the adhesive properties of the blending zone were significantly higher than those in the RAP binders. Statistical analysis also indicated that the stiffness of the interface blending zone is affected by the properties of the RAP and virgin asphalt binders, while the adhesive properties of the interface blending zone is primarily affected by those of virgin binder used. A linear regression model was developed to predict the modulus and adhesive bonding energy of the blending zone in terms of RAP and virgin binder properties. The validation of the regression models suggested that these models can serve as a viable tool in selecting the virgin binder to be used in a RAP mixture based on the properties of the RAP binder. Finally, the AFM imaging and force spectroscopy experiments revealed very limited to no blending between manufacturing waste or tear-off RAS materials and the virgin binders considered. The asphalt mixture test results also showed that the use of tear-off RAS in intermediate asphalt mixes significantly reduced their resistance to low-temperature and fatigue cracking as well as moisture damage, which can be attributed to the limited blending observed in the AFM experiments between the RAS and the virgin asphalt binders.

Book Characterization of Reclaimed Asphalt and Performance Based Evaluation of Its Use in Recycled Mixtures

Download or read book Characterization of Reclaimed Asphalt and Performance Based Evaluation of Its Use in Recycled Mixtures written by Jesse David Doyle and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Reclaimed asphalt pavement (RAP) is a valuable resource that can be recycled into new asphalt mixtures. In recent years, the continued rise of raw material costs has generated considerable interest in increasing RAP usage. Warm mix asphalt (WMA) is a modern development in the asphalt industry that can potentially help increase RAP usage and achieve adequate mixture performance. The purpose of this dissertation is to: 1) develop a method to characterize the absorbed, inert and effective bituminous components in RAP; and 2) evaluate performance of high RAP-WMA mixtures for various pavement applications including airfield surfaces, highway surfaces and highway bases. A unique approach was taken to characterize RAP properties that coupled a dataset of 568 asphalt mix designs spanning five years of practice and testing 100% RAP with added virgin binder; 394 compacted specimens and 68 loose specimens were tested. A method to predict RAP absorbed asphalt was developed and shown to yield more reasonable results than conventional methods which were shown very likely to give incorrect absorbed asphalt contents in some conditions. The relative effectiveness of RAP surface asphalt was evaluated and estimates of inert and effective RAP asphalt were made for a variety of temperature, compactive effort, and warm mix additive conditions. Results showed different behaviors between RAP sources and between hot and warm mix temperatures. These results were also observed in volumetrics of high RAP mixtures. Performance evaluation was based on testing 75 slab specimens and more than 1100 gyratory specimens. Test data indicated a potential for decreased durability as RAP content increases; however 25% RAP highway surface mixtures and 50% RAP base mixtures had similar performance to current practice. Low temperature mixture stiffness testing and thermal cracking analysis indicated slightly increased stiffness with high RAP and 25% RAP highway surface mixtures that had comparable performance to current practice. Dry rut testing indicated high RAP mixtures are rut resistant. Moisture damage testing of high RAP mixtures indicated passing results in tensile strength ratio testing but potential for moisture damage in loaded wheel tracking. Overall, 25% RAP highway surface mixtures are recommended for immediate implementation.

Book Rejuvenation of Reclaimed Asphalt Pavement  RAP  in Hot Mix Asphalt Recycling with High RAP Content

Download or read book Rejuvenation of Reclaimed Asphalt Pavement RAP in Hot Mix Asphalt Recycling with High RAP Content written by Karen A. O'Sullivan and published by . This book was released on 2011 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: This study aims to understand intermingling process between rejuvenators and aged asphalt binders in reclaimed asphalt pavement (RAP) materials during RAP recycling operations in pavement construction. This study presents results of a laboratory study on the use of rejuvenators to recycle age hardened asphalt binders in RAP. Laboratory Hot Mix Asphalt (HMA) samples were prepared with RAP millings from one specific pavement and a commercial rejuvenator, with 80 to 90 percent RAP content. The following mixes with various amount of the rejuvenator were evaluated: a control mix prepared from burned RAP aggregate and virgin asphalt binder, another control mix prepared with heated RAP, a recycled RAP mix with 1% rejuvenator (at the weight of the total mix), a recycled RAP mix with 0.5% rejuvenator, and a recycled RAP mix with 0.5% rejuvenator and 0.5% virgin asphalt binder. Dynamic modulus test results of laboratory prepared samples were obtained for a range of temperatures over an eleven-week period of accelerated aging at 60o.C in an inert gas oven and a conventional convection oven. Accelerated aging protocol was used to evaluate the intermingling process associated with diffusion mechanism between the rejuvenator and aged asphalt binder while an argon inert gas oven provides an environment where oxidation-related ageing and hardening in rejuvenated asphalt binders can be eliminated. The dynamic modulus data of six distinct mixes were statistically analyzed and compared to the results reported in the literature for virgin and low percentage recycled mixes. Collected data suggest that the use of rejuvenator is a viable option for recycling HMA with high RAP material content.

Book Engineered Frameworks for Evaluating the Use of Recycling Agents in Surface Asphalt Mixtures for Virginia

Download or read book Engineered Frameworks for Evaluating the Use of Recycling Agents in Surface Asphalt Mixtures for Virginia written by Jhony Habbouche and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, several state highway agencies have introduced special provisions and specifications to allow the use of higher contents of reclaimed asphalt pavement (RAP) in asphalt surface mixtures. The challenges associated with high RAP mixtures can be addressed through the use of additives such as recycling agents (RAs) and/or softer binders. Currently, there are no specific guidelines or specifications available to evaluate the acceptability of RAs in Virginia. The purpose of this study was to evaluate the short- and long-term effectiveness of RAs in improving the performance of asphalt mixtures, particularly those with high RAP contents. Another objective of the study was to establish a performance-based framework to determine the acceptability of a specific RA product for inclusion in the Virginia Department of Transportation’s Approved Product List. Both objectives were achieved by benchmarking recycled binder blends (Phase I) and mixtures (Phase II). These were then compared in terms of laboratory performance to commonly used virgin asphalt binders and mixtures in Virginia. Moreover, a comprehensive review of the literature and information from state departments of transportation and RA suppliers on the current state of the practice regarding the use of recycled materials and RAs in asphalt mixtures was summarized. Component materials, including three virgin asphalt binders, RAP and aggregate materials from three different sources, and six RAs, were collected and tested. Phase I involved testing virgin and RAP binders; combinations of virgin binder and RAP binder; and combination of virgin binder, RAP binder, and RAs. A total of 26 binder blends were evaluated at various aging conditions through numerous rheology- and chemistry-based tests. In Phase II, 10 asphalt mixtures were designed and evaluated for durability, resistance to rutting, and resistance to cracking at various aging conditions. Cross-scale evaluation of asphalt binder and mixture testing data was established. Finally, preliminary verification was performed using data collected from various field trials constructed in Virginia. Based on the binders and mixtures tested in this study, the effectiveness of RAs in improving the properties of asphalt binder blends is specific to the product being used and to the targeted temperatures or conditions. Moreover, RAs can enhance the performance and increase the use of recycled materials in asphalt mixtures provided that the correct and suitable dosage of RA product is determined through a performance-based testing framework. The study recommends the following: (1) adopting the streamlined frameworks presented in this study to determine the acceptability of a given RA; (2) further validating the presented framework using different component materials; (3) employing balanced mix design tests to assess the performance characteristics of surface mixtures (with A and D designations) with RAs and drafting a roadmap; (4) collecting and further evaluating the field performance of all trials involving high RAP, RAs, and/or softer binders; (5) investigating the availability and activity of binders, especially with RAs, in RAP materials; (6) evaluating and establishing a protocol to assess the consistency of RAP materials; and (7) quantifying the environmental and economic impacts of using surface mixtures with high RAP contents and/or RAs.