EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Time Series in High Dimension  the General Dynamic Factor Model

Download or read book Time Series in High Dimension the General Dynamic Factor Model written by Marc Hallin and published by World Scientific Publishing Company. This book was released on 2020-03-30 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: Factor models have become the most successful tool in the analysis and forecasting of high-dimensional time series. This monograph provides an extensive account of the so-called General Dynamic Factor Model methods. The topics covered include: asymptotic representation problems, estimation, forecasting, identification of the number of factors, identification of structural shocks, volatility analysis, and applications to macroeconomic and financial data.

Book Large dimensional Panel Data Econometrics  Testing  Estimation And Structural Changes

Download or read book Large dimensional Panel Data Econometrics Testing Estimation And Structural Changes written by Feng Qu and published by World Scientific. This book was released on 2020-08-24 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to fill the gap between panel data econometrics textbooks, and the latest development on 'big data', especially large-dimensional panel data econometrics. It introduces important research questions in large panels, including testing for cross-sectional dependence, estimation of factor-augmented panel data models, structural breaks in panels and group patterns in panels. To tackle these high dimensional issues, some techniques used in Machine Learning approaches are also illustrated. Moreover, the Monte Carlo experiments, and empirical examples are also utilised to show how to implement these new inference methods. Large-Dimensional Panel Data Econometrics: Testing, Estimation and Structural Changes also introduces new research questions and results in recent literature in this field.

Book High Dimensional Statistics

Download or read book High Dimensional Statistics written by Martin J. Wainwright and published by Cambridge University Press. This book was released on 2019-02-21 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.

Book Inference and Prediction in Large Dimensions

Download or read book Inference and Prediction in Large Dimensions written by Denis Bosq and published by John Wiley & Sons. This book was released on 2008-03-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a predominantly theoretical coverage of statistical prediction, with some potential applications discussed, when data and/ or parameters belong to a large or infinite dimensional space. It develops the theory of statistical prediction, non-parametric estimation by adaptive projection – with applications to tests of fit and prediction, and theory of linear processes in function spaces with applications to prediction of continuous time processes. This work is in the Wiley-Dunod Series co-published between Dunod (www.dunod.com) and John Wiley and Sons, Ltd.

Book Concentration of Maxima and Fundamental Limits in High Dimensional Testing and Inference

Download or read book Concentration of Maxima and Fundamental Limits in High Dimensional Testing and Inference written by Zheng Gao and published by Springer. This book was released on 2021-09-08 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified exposition of some fundamental theoretical problems in high-dimensional statistics. It specifically considers the canonical problems of detection and support estimation for sparse signals observed with noise. Novel phase-transition results are obtained for the signal support estimation problem under a variety of statistical risks. Based on a surprising connection to a concentration of maxima probabilistic phenomenon, the authors obtain a complete characterization of the exact support recovery problem for thresholding estimators under dependent errors.

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book Partially Linear Models

    Book Details:
  • Author : Wolfgang Härdle
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642577008
  • Pages : 210 pages

Download or read book Partially Linear Models written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.

Book High Dimensional Covariance Estimation

Download or read book High Dimensional Covariance Estimation written by Mohsen Pourahmadi and published by John Wiley & Sons. This book was released on 2013-06-24 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.

Book High dimensional Econometrics And Identification

Download or read book High dimensional Econometrics And Identification written by Chihwa Kao and published by World Scientific. This book was released on 2019-04-05 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many applications of econometrics and economics, a large proportion of the questions of interest are identification. An economist may be interested in uncovering the true signal when the data could be very noisy, such as time-series spurious regression and weak instruments problems, to name a few. In this book, High-Dimensional Econometrics and Identification, we illustrate the true signal and, hence, identification can be recovered even with noisy data in high-dimensional data, e.g., large panels. High-dimensional data in econometrics is the rule rather than the exception. One of the tools to analyze large, high-dimensional data is the panel data model.High-Dimensional Econometrics and Identification grew out of research work on the identification and high-dimensional econometrics that we have collaborated on over the years, and it aims to provide an up-todate presentation of the issues of identification and high-dimensional econometrics, as well as insights into the use of these results in empirical studies. This book is designed for high-level graduate courses in econometrics and statistics, as well as used as a reference for researchers.

Book Research Papers in Statistical Inference for Time Series and Related Models

Download or read book Research Papers in Statistical Inference for Time Series and Related Models written by Yan Liu and published by Springer Nature. This book was released on 2023-05-31 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compiles theoretical developments on statistical inference for time series and related models in honor of Masanobu Taniguchi's 70th birthday. It covers models such as long-range dependence models, nonlinear conditionally heteroscedastic time series, locally stationary processes, integer-valued time series, Lévy Processes, complex-valued time series, categorical time series, exclusive topic models, and copula models. Many cutting-edge methods such as empirical likelihood methods, quantile regression, portmanteau tests, rank-based inference, change-point detection, testing for the goodness-of-fit, higher-order asymptotic expansion, minimum contrast estimation, optimal transportation, and topological methods are proposed, considered, or applied to complex data based on the statistical inference for stochastic processes. The performances of these methods are illustrated by a variety of data analyses. This collection of original papers provides the reader with comprehensive and state-of-the-art theoretical works on time series and related models. It contains deep and profound treatments of the asymptotic theory of statistical inference. In addition, many specialized methodologies based on the asymptotic theory are presented in a simple way for a wide variety of statistical models. This Festschrift finds its core audiences in statistics, signal processing, and econometrics.

Book Advanced Statistical Methods in Process Monitoring  Finance  and Environmental Science

Download or read book Advanced Statistical Methods in Process Monitoring Finance and Environmental Science written by Sven Knoth and published by Springer Nature. This book was released on with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Dimensional Covariance Matrix Estimation

Download or read book High Dimensional Covariance Matrix Estimation written by Aygul Zagidullina and published by Springer Nature. This book was released on 2021-10-29 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.

Book Time Series Models

    Book Details:
  • Author : Manfred Deistler
  • Publisher : Springer Nature
  • Release : 2022-10-21
  • ISBN : 3031132130
  • Pages : 213 pages

Download or read book Time Series Models written by Manfred Deistler and published by Springer Nature. This book was released on 2022-10-21 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a self-contained presentation of the theory and models of time series analysis. Putting an emphasis on weakly stationary processes and linear dynamic models, it describes the basic concepts, ideas, methods and results in a mathematically well-founded form and includes numerous examples and exercises. The first part presents the theory of weakly stationary processes in time and frequency domain, including prediction and filtering. The second part deals with multivariate AR, ARMA and state space models, which are the most important model classes for stationary processes, and addresses the structure of AR, ARMA and state space systems, Yule-Walker equations, factorization of rational spectral densities and Kalman filtering. Finally, there is a discussion of Granger causality, linear dynamic factor models and (G)ARCH models. The book provides a solid basis for advanced mathematics students and researchers in fields such as data-driven modeling, forecasting and filtering, which are important in statistics, control engineering, financial mathematics, econometrics and signal processing, among other subjects.

Book Large Covariance and Autocovariance Matrices

Download or read book Large Covariance and Autocovariance Matrices written by Arup Bose and published by CRC Press. This book was released on 2018-07-03 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Covariance and Autocovariance Matrices brings together a collection of recent results on sample covariance and autocovariance matrices in high-dimensional models and novel ideas on how to use them for statistical inference in one or more high-dimensional time series models. The prerequisites include knowledge of elementary multivariate analysis, basic time series analysis and basic results in stochastic convergence. Part I is on different methods of estimation of large covariance matrices and auto-covariance matrices and properties of these estimators. Part II covers the relevant material on random matrix theory and non-commutative probability. Part III provides results on limit spectra and asymptotic normality of traces of symmetric matrix polynomial functions of sample auto-covariance matrices in high-dimensional linear time series models. These are used to develop graphical and significance tests for different hypotheses involving one or more independent high-dimensional linear time series. The book should be of interest to people in econometrics and statistics (large covariance matrices and high-dimensional time series), mathematics (random matrices and free probability) and computer science (wireless communication). Parts of it can be used in post-graduate courses on high-dimensional statistical inference, high-dimensional random matrices and high-dimensional time series models. It should be particularly attractive to researchers developing statistical methods in high-dimensional time series models. Arup Bose is a professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in mathematical statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been editor of Sankhyā for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His first book Patterned Random Matrices was also published by Chapman & Hall. He has a forthcoming graduate text U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee) to be published by Hindustan Book Agency. Monika Bhattacharjee is a post-doctoral fellow at the Informatics Institute, University of Florida. After graduating from St. Xavier's College, Kolkata, she obtained her master’s in 2012 and PhD in 2016 from the Indian Statistical Institute. Her thesis in high-dimensional covariance and auto-covariance matrices, written under the supervision of Dr. Bose, has received high acclaim.

Book Dynamic Factor Models

    Book Details:
  • Author : Jörg Breitung
  • Publisher :
  • Release : 2005
  • ISBN : 9783865580979
  • Pages : 29 pages

Download or read book Dynamic Factor Models written by Jörg Breitung and published by . This book was released on 2005 with total page 29 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Partial Identification in Econometrics and Related Topics

Download or read book Partial Identification in Econometrics and Related Topics written by Nguyen Ngoc Thach and published by Springer Nature. This book was released on with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Essays in Honor of Cheng Hsiao

Download or read book Essays in Honor of Cheng Hsiao written by Dek Terrell and published by Emerald Group Publishing. This book was released on 2020-04-15 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Including contributions spanning a variety of theoretical and applied topics in econometrics, this volume of Advances in Econometrics is published in honour of Cheng Hsiao.