EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Environmentally assisted Cracking in Austenitic Light Water Reactor Structural Materials

Download or read book Environmentally assisted Cracking in Austenitic Light Water Reactor Structural Materials written by Hans-Peter Seifert and published by . This book was released on 2009 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Environmental assisted Cracking in Austenitic Light Water Reactor Structural Materials

Download or read book Environmental assisted Cracking in Austenitic Light Water Reactor Structural Materials written by Hans-Peter Seifert and published by . This book was released on 2009 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Environmentally Assisted Cracking of Light water Reactor Materials

Download or read book Environmentally Assisted Cracking of Light water Reactor Materials written by and published by . This book was released on 1996 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used.

Book Environmentally Assisted Cracking in Light Water Reactors Annual Report January   December 2005

Download or read book Environmentally Assisted Cracking in Light Water Reactors Annual Report January December 2005 written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This report summarizes work performed from January to December 2005 by Argonne National Laboratory on fatigue and environmentally assisted cracking in light water reactors (LWRs). Existing statistical models for estimating the fatigue life of carbon and low-alloy steels and austenitic stainless steels (SSs) as a function of material, loading, and environmental conditions were updated. Also, the ASME Code fatigue adjustment factors of 2 on stress and 20 on life were critically reviewed to assess the possible conservatism in the current choice of the margins. An approach, based on an environmental fatigue correction factor, for incorporating the effects of LWR environments into ASME Section III fatigue evaluations is discussed. The susceptibility of austenitic stainless steels and their welds to irradiation-assisted stress corrosion cracking (IASCC) is being evaluated as a function of the fluence level, water chemistry, material chemistry, and fabrication history. For this task, crack growth rate (CGR) tests and slow strain rate tensile (SSRT) tests are being conducted on various austenitic SSs irradiated in the Halden boiling water reactor. The SSRT tests are currently focused on investigating the effects of the grain boundary engineering process on the IASCC of the austenitic SSs. The CGR tests were conducted on Type 316 SSs irradiated to 0.45-3.0 dpa, and on sensitized Type 304 SS and SS weld heat-affected-zone material irradiated to 2.16 dpa. The CGR tests on materials irradiated to 2.16 dpa were followed by a fracture toughness test in a water environment. The effects of material composition, irradiation, and water chemistry on growth rates are discussed. The susceptibility of austenitic SS core internals to IASCC and void swelling is also being evaluated for pressurized water reactors. Both SSRT tests and microstructural examinations are being conducted on specimens irradiated in the BOR-60 reactor in Russia to doses up to 20 dpa. Crack growth rate data, obtained in the pressurized water reactor environment, are presented on Ni-alloy welds prepared in the laboratory or obtained from the nozzle-to-pipe weld of the V.C. Summer reactor. The experimental CGRs under cyclic and constant load are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of these materials to environmentally enhanced cracking under a variety of loading conditions.

Book Environmentally Assisted Cracking of LWR Materials

Download or read book Environmentally Assisted Cracking of LWR Materials written by and published by . This book was released on 1995 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289°C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320°C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections.

Book Environmentally Assisted Cracking in Light Water Reactors  Semiannual Report  October 1993  March 1994

Download or read book Environmentally Assisted Cracking in Light Water Reactors Semiannual Report October 1993 March 1994 written by and published by . This book was released on 1995 with total page 51 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1993 to March 1994. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns in operating plants and as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels, (b) EAC of wrought and cast austenitic stainless steels (SSs), and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS after accumulation of relatively high fluence. Fatigue tests have been conducted on A302-Gr B low-alloy steel to verify whether the current predictions of modest decreases of fatigue life in simulated pressurized water reactor water are valid for high-sulfur heats that show environmentally enhanced fatigue crack growth rates. Additional crack growth data were obtained on fracture-mechanics specimens of austenitic SSs to investigate threshold stress intensity factors for EAC in high-purity oxygenated water at 289°C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating boiling water reactors were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements, which are not specified in the ASTM specifications, may contribute to IASCC of solution-annealed materials.

Book Environmentally Assisted Cracking in Light Water Reactors

Download or read book Environmentally Assisted Cracking in Light Water Reactors written by and published by . This book was released on 1987 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Cracking in sensitized austenitic stainless steel (SS) piping and associated components in boiling water reactors (BWRs) has been observed since the mid-1960s. Proposed remedies include procedures that produce a favorable residual stress state in the weld regions, replacement of the piping with materials that are more resistant to SCC, and modification of the reactor coolant environment. During this year, studies that have important implications for all three classes of proposed remedies have been carried out. These studies include fracture-mechanics crack-growth-rate tests on Type 316 NG SS and weld overlay specimens in impurity and high-purity environments, finite-element studies on weldments treated by the Mechanical Stress Improvement Process (MSIP) developed by O'Donnell and Associates, heat-to-heat studies of SCC in alternate alloys such as Types 316 NG and 347 Mod SS, and slow-strain-rate tests for the characterization of a variety of potential reactor coolant impurities. In addition, studies on the corrosion potential of irradiated stainless steel have been performed. This work is intended to provide a better understanding of the conditions associated with irradiation-assisted SCC (IASCC) in the core region.

Book Environmentally Assisted Cracking

Download or read book Environmentally Assisted Cracking written by R. D. Kane and published by ASTM International. This book was released on 2000 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: The November 2000 symposium addressed methodologies for evaluation of environmental assisted cracking (EAC) in equipment and structures exposed to corrosive environments, and recent developments in the generation of relevant materials properties data based on laboratory tests. Twenty-seven papers fr

Book Structural Materials for Generation IV Nuclear Reactors

Download or read book Structural Materials for Generation IV Nuclear Reactors written by Pascal Yvon and published by Woodhead Publishing. This book was released on 2016-08-27 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area

Book Fatigue and Environmentally Assisted Cracking in Light Water Reactors

Download or read book Fatigue and Environmentally Assisted Cracking in Light Water Reactors written by and published by . This book was released on 1992 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fatigue and stress corrosion cracking (SCC) for low-alloy steel used in piping and in steam generator and reactor pressure vessels have been investigated. Fatigue data were obtained on medium-sulfur-content A533-Gr B and A106-Gr B steels in high-purity (HP) deoxygenated water, in simulated pressurized water reactor water, and in air. Analytical studies focused on the behavior of carbon steels in boiling water reactor (BWR) environments. Crack-growth rates of composite fracture-mechanics specimens of A533-Gr B/Inconel-182/Inconel-600 (plated with nickel) and homogeneous specimens of A533-Gr B steel were determined under small-amplitude cyclic loading in HP water with ≈300 pbb dissolved oxygen. Radiation-induced segregation and irradiation-assisted SCC of Type 304 SS after accumulation of relatively high fluence also have been investigated. Microchemical and microstructural changes in HP and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy, and slow-strain-rate tensile tests were conducted on tubular specimens in air and in simulated BWR water at 289°C.

Book Stress Corrosion Cracking in Light Water Reactors

Download or read book Stress Corrosion Cracking in Light Water Reactors written by International Atomic Energy Agency and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides general descriptions of degradation mechanisms of different types of stress corrosion cracking (SCC) which are concerned with systems, structures and components in PWRs and BWRs. This publication includes examples of good practices in preventing, mitigating and repairing SCC damage and summarizes research and development programmes.

Book Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems   Water Reactors

Download or read book Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors written by Gabriell Ilevbare and published by Springer. This book was released on 2017-07-17 with total page 2354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 15th Edition of the International Conference on Materials Degradation in Light Water Reactors focuses on subject areas critical to the safe and efficient running of nuclear reactor systems through the exchange and discussion of reseach results as well as field operating and management experience.

Book Fatigue Assessment in Light Water Reactors for Long Term Operation

Download or read book Fatigue Assessment in Light Water Reactors for Long Term Operation written by IAEA and published by International Atomic Energy Agency. This book was released on 2023-04-27 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fatigue is a major element in time limited ageing analysis for long term operation of nuclear power plants (NPPs). It is important to understand how cracks occur and grow as a result of fatigue, and then assess fatigue failure. In the design and operating phase of NPPs, it is essential to consider the concurrent loadings associated with the design transients, thermal stratification, seismically induced stress cycles, and all relevant loads due to the various operational modes. After repeated cyclic loading, crack initiation can occur at the most highly affected locations if sufficient localized micro-structural damage has accumulated. This publication provides practical guidelines on how to identify and manage fatigue issues in NPPs. It explains the mechanism of fatigue, identifies which elements are the major contributors, and details how fatigue can be minimized in the design phase for new NPPs.

Book Structural Alloys for Nuclear Energy Applications

Download or read book Structural Alloys for Nuclear Energy Applications written by Robert Odette and published by Newnes. This book was released on 2019-08-15 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.