EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Engineered Interfaces and Nano scale Thin Films for Solid Oxide Fuel Cell Electrolytes

Download or read book Engineered Interfaces and Nano scale Thin Films for Solid Oxide Fuel Cell Electrolytes written by Manjula I. Nandasiri and published by . This book was released on 2013 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid state electrolytes with high oxygen ionic conductivity at low temperatures are required to develop cost effective and efficient solid oxide fuel cells. This study investigates the influence of engineered interfaces on the oxygen ionic conductivity of nanoscale multilayer thin film electrolytes. The epitaxial Sm2O3 doped CeO2 (SDC) and Sc2O3 stabilized ZrO2 (ScSZ) are selected as the alternative layers for the proposed multilayer thin film electrolyte based on the optimum structural, chemical, and electrical properties reported in the previous studies. The epitaxial SDC(111)/ScSZ(111) multilayer thin films are grown on high purity Al2O3(0001) substrates by oxygen plasma assisted molecular beam epitaxy. Prior to the deposition of multilayers, the growth parameters are optimized for epitaxial CeO2, ZrO2, SDC, and ScSZ thin films. The epitaxial orientation and surface morphology of CeO2 thin films shows dependency on the growth rate. Epitaxial CeO2(111) is obtained at relatively high growth rates at a substrate temperature of 650°C and an oxygen partial pressure of 2 × 10-5 Torr. The same growth parameters are used for the deposition of ZrO2 thin films. ZrO2 exhibits both monoclinic and cubic phases, which is stabilized in the cubic structure by doping with Sc2O3. The Sm and Sc evaporation rates are varied during the growth to obtain thin films of 15 mol % SmO1.5 doped CeO2 and 20 mol % ScO1.5 stabilized ZrO2, respectively. The SDC/ScSZ multilayer thin films are grown using the same growth parameters by varying the number of layers. The SDC/ScSZ multilayer thin films show significant enhancement in the oxygen ionic conductivity in comparison to single layer SDC and ScSZ thin films. The increase in the oxygen ionic conductivity with the increase in number of layers can be attributed to lattice mismatch induced ionic conductivity along the interfaces. The 8-layer film exhibits the maximum oxygen ionic conductivity with one order of magnitude enhancement in the temperature range of 500-800°C compared to single layer thin films.

Book Nanoscale Surface Engineering for Ceramic Fuel Cells

Download or read book Nanoscale Surface Engineering for Ceramic Fuel Cells written by Young Beom Kim and published by Stanford University. This book was released on 2011 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ceramic fuel cell (CFC) is an all-solid-state energy conversion device and usually refers to fuel cells employing solid ceramic electrolytes. The present generation of ceramic fuel cells can be classified into two types according to the electrolytes they use: oxygen ion conducting fuel cells, or solid oxide fuel cells (SOFCs) and proton conducting fuel cells (PCFC or PCOFC). CFCs usually have the highest operating temperature of all fuel cells at about 600~1000oC for reasonably active charge transfer reactions at the electrode-electrolyte interface and ion transport through the electrolyte. This high CFC's operating temperature has limited practical applications. The goal of my Ph.D. research is to minimize the activation losses at the electrode/electrolyte interface by nanoscale engineering to achieve decent performance of ceramic fuel cells at lower operating temperatures (300~500oC). This dissertation has three main nanoscale surface engineering approaches according to the fuel cell components: electrode structure, composite electrolyte structures with thin interlayers, and the fabrication of three-dimensional fuel cell membrane-electrode assemblies (MEAs). We would call the first part of the dissertation as nanoscale electrode structure engineering for ceramic fuel cells. It describes the fabrication and investigation of morphologically stable model electrode structures with well-defined and sharp platinum/yttria stabilized zirconia (YSZ) interfaces to study geometric effects at triple phase boundaries (TPB), which is known as the actual electrochemical reaction site. A nanosphere lithography (NSL) technique using monodispersed silica nanoparticles is employed to deposit nonporous platinum electrodes containing close-packed arrays of circular openings through the underlying YSZ surface. These nano-structured dense Pt array cathodes exhibited better structural integrity and thermal stability at the fuel cell operating temperature of 450~500oC when compared to porous sputtered Pt electrodes. More importantly, electrochemical studies on geometrically well-defined Pt/YSZ sharp interfaces demonstrated that the cathode impedance and cell performance both scale almost linearly with aerial density of TPB length. These controlled experiments also allowed for the estimation of the area of the electrochemical reaction zone. This information can be used as a platform for designing the electrode structure to maximize the performance of ceramic fuel cells. The second part of the experiment is about electrolyte surface structure engineering by fabricating composite electrolyte structures. This study describes, both theoretically and experimentally, the role of doped ceria cathodic interlayers and their surface grain boundaries in enhancing oxygen incorporation kinetics. Quantum mechanical simulations of oxygen incorporation energetics support the experimental results and indicate a low activation energy of only 0.07eV for yttria-doped ceria (YDC), while the incorporation reaction on YSZ is activated by a significantly higher energy barrier of 0.38eV. For experiments, epitaxial and polycrystalline YDC, gadolinia-doped ceria (GDC) thin films were grown by pulsed laser deposition (PLD) on the cathode side of 300[Mu]m-thick single crystalline (100) and 100[Mu]m-thick polycrystalline YSZ substrates, respectively. For the composite electrolyte sample with YDC interlayer, the Oxygen isotope exchange experiment was conducted employing secondary ion mass spectrometry (SIMS) with high spatial resolution (50nm). The surface mapping result of 18O/16O shows high activity at surface grain boundary regions indicating that the grain boundary regions are electrochemically active for oxygen incorporation reaction. Fuel cell current-voltage behavior and electrochemical impedance spectroscopy measurements were carried out in the temperature range of 350oC-450oC on both single crystalline and polycrystalline interlayered cells. Results of dc and ac measurements confirm that cathodic resistances of cells with epitaxial doped-cerium oxides (GDC, YDC) layers are lower than that for the YSZ-only control cell. This is attributed to the higher surface exchange coefficient for doped-cerium oxides than for YSZ. Moreover, the role of grain boundary density at the cathode side external surface was investigated on surface-engineered electrode-membrane assemblies (MEA) having different doped-ceria surface grain sizes. MEAs having smaller surface grain size show better cell performance and correspondingly lower electrode interfacial resistance. Electrochemical measurements suggest that doped-ceria grain boundaries at the cathode side contribute to the enhancement of oxygen surface kinetics. These results provide an opportunity and a microstructure design pathway to improve performance of LT-SOFCs by surface engineering with nano-granular, catalytically superior thin doped-ceria cathodic interlayers. Thirdly, as a reaction surface engineering for SOFC, we investigated a novel method for creating a three-dimensional (3-D) fuel cell architecture to enhance fuel cell performance by increasing the area of the electrolyte membrane. The research describes the fabrication and operation of a low temperature 3-D protonically conducting ceramic fuel cell featuring a close packed and free standing crater patterned architecture achieved by nanospherical patterning (NSP) and dry etching techniques. The cell employed conformal layers of yttria-doped barium zirconate (BYZ) anhydrous electrolyte membrane (~120nm) sandwiched between thin (~70nm) sputtered porous Pt electrode layers. The fuel cell structure achieved the highest reported peak power densities up to 186 mW/cm2 at 450oC using hydrogen as fuel. To further investigate the proton conductivity of the electrolyte, which is BYZ, we studied the effect of crystalline structures on proton conductivity of BYZ thin films. The results showed that the grain boundaries impede the proton transport through the grain boundary and cause extremely high resistance for ionic transport in the film. This experimental result also can provide significant implications in designing proton conducting ceramic fuel cells. All these efforts and investigations were intended to enhance the ceramic fuel cell performance at low operating temperatures (300--500oC) by improving electrode/electrolyte interface electrochemical reactions. We expect to achieve further enhancement when we combine the approaches each other. For example, fabrication of three-dimensional fuel cells with doped-ceria interlayers and composite electrolyte structures with optimized electrode nano-structures. Investigations are on-going in our laboratory as a future work.

Book Grain size Effects in Nanoscaled Electrolyte and Cathode Thin Films for Solid Oxide Fuel Cells  SOFC

Download or read book Grain size Effects in Nanoscaled Electrolyte and Cathode Thin Films for Solid Oxide Fuel Cells SOFC written by Christoph Peters and published by KIT Scientific Publishing. This book was released on 2009 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to their high energy conversion efficiencies and low emissions, Solid Oxide Fuel Cells (SOFCs) show promise as a replacement for combustion-based electrical generators at all sizes. Further increase of SOFC efficiency can be achieved by microstructural optimization of the oxygen-ion conducting electrolyte and the mixed ionic-electronic conducting cathode. By application of nanoscaled thin films, the exceptionally high efficiency allows the realization of mobile SOFCs.

Book Metal Oxide Based Thin Film Structures

Download or read book Metal Oxide Based Thin Film Structures written by Nini Pryds and published by Elsevier. This book was released on 2017-09-07 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike

Book Nanoscale Surface Engineering for Ceramic Fuel Cells

Download or read book Nanoscale Surface Engineering for Ceramic Fuel Cells written by Young Beom Kim and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Ceramic fuel cell (CFC) is an all-solid-state energy conversion device and usually refers to fuel cells employing solid ceramic electrolytes. The present generation of ceramic fuel cells can be classified into two types according to the electrolytes they use: oxygen ion conducting fuel cells, or solid oxide fuel cells (SOFCs) and proton conducting fuel cells (PCFC or PCOFC). CFCs usually have the highest operating temperature of all fuel cells at about 600~1000oC for reasonably active charge transfer reactions at the electrode-electrolyte interface and ion transport through the electrolyte. This high CFC's operating temperature has limited practical applications. The goal of my Ph. D. research is to minimize the activation losses at the electrode/electrolyte interface by nanoscale engineering to achieve decent performance of ceramic fuel cells at lower operating temperatures (300~500oC). This dissertation has three main nanoscale surface engineering approaches according to the fuel cell components: electrode structure, composite electrolyte structures with thin interlayers, and the fabrication of three-dimensional fuel cell membrane-electrode assemblies (MEAs). We would call the first part of the dissertation as nanoscale electrode structure engineering for ceramic fuel cells. It describes the fabrication and investigation of morphologically stable model electrode structures with well-defined and sharp platinum/yttria stabilized zirconia (YSZ) interfaces to study geometric effects at triple phase boundaries (TPB), which is known as the actual electrochemical reaction site. A nanosphere lithography (NSL) technique using monodispersed silica nanoparticles is employed to deposit nonporous platinum electrodes containing close-packed arrays of circular openings through the underlying YSZ surface. These nano-structured dense Pt array cathodes exhibited better structural integrity and thermal stability at the fuel cell operating temperature of 450~500oC when compared to porous sputtered Pt electrodes. More importantly, electrochemical studies on geometrically well-defined Pt/YSZ sharp interfaces demonstrated that the cathode impedance and cell performance both scale almost linearly with aerial density of TPB length. These controlled experiments also allowed for the estimation of the area of the electrochemical reaction zone. This information can be used as a platform for designing the electrode structure to maximize the performance of ceramic fuel cells. The second part of the experiment is about electrolyte surface structure engineering by fabricating composite electrolyte structures. This study describes, both theoretically and experimentally, the role of doped ceria cathodic interlayers and their surface grain boundaries in enhancing oxygen incorporation kinetics. Quantum mechanical simulations of oxygen incorporation energetics support the experimental results and indicate a low activation energy of only 0.07eV for yttria-doped ceria (YDC), while the incorporation reaction on YSZ is activated by a significantly higher energy barrier of 0.38eV. For experiments, epitaxial and polycrystalline YDC, gadolinia-doped ceria (GDC) thin films were grown by pulsed laser deposition (PLD) on the cathode side of 300[Mu]m-thick single crystalline (100) and 100[Mu]m-thick polycrystalline YSZ substrates, respectively. For the composite electrolyte sample with YDC interlayer, the Oxygen isotope exchange experiment was conducted employing secondary ion mass spectrometry (SIMS) with high spatial resolution (50nm). The surface mapping result of 18O/16O shows high activity at surface grain boundary regions indicating that the grain boundary regions are electrochemically active for oxygen incorporation reaction. Fuel cell current-voltage behavior and electrochemical impedance spectroscopy measurements were carried out in the temperature range of 350oC-450oC on both single crystalline and polycrystalline interlayered cells. Results of dc and ac measurements confirm that cathodic resistances of cells with epitaxial doped-cerium oxides (GDC, YDC) layers are lower than that for the YSZ-only control cell. This is attributed to the higher surface exchange coefficient for doped-cerium oxides than for YSZ. Moreover, the role of grain boundary density at the cathode side external surface was investigated on surface-engineered electrode-membrane assemblies (MEA) having different doped-ceria surface grain sizes. MEAs having smaller surface grain size show better cell performance and correspondingly lower electrode interfacial resistance. Electrochemical measurements suggest that doped-ceria grain boundaries at the cathode side contribute to the enhancement of oxygen surface kinetics. These results provide an opportunity and a microstructure design pathway to improve performance of LT-SOFCs by surface engineering with nano-granular, catalytically superior thin doped-ceria cathodic interlayers. Thirdly, as a reaction surface engineering for SOFC, we investigated a novel method for creating a three-dimensional (3-D) fuel cell architecture to enhance fuel cell performance by increasing the area of the electrolyte membrane. The research describes the fabrication and operation of a low temperature 3-D protonically conducting ceramic fuel cell featuring a close packed and free standing crater patterned architecture achieved by nanospherical patterning (NSP) and dry etching techniques. The cell employed conformal layers of yttria-doped barium zirconate (BYZ) anhydrous electrolyte membrane (~120nm) sandwiched between thin (~70nm) sputtered porous Pt electrode layers. The fuel cell structure achieved the highest reported peak power densities up to 186 mW/cm2 at 450oC using hydrogen as fuel. To further investigate the proton conductivity of the electrolyte, which is BYZ, we studied the effect of crystalline structures on proton conductivity of BYZ thin films. The results showed that the grain boundaries impede the proton transport through the grain boundary and cause extremely high resistance for ionic transport in the film. This experimental result also can provide significant implications in designing proton conducting ceramic fuel cells. All these efforts and investigations were intended to enhance the ceramic fuel cell performance at low operating temperatures (300--500oC) by improving electrode/electrolyte interface electrochemical reactions. We expect to achieve further enhancement when we combine the approaches each other. For example, fabrication of three-dimensional fuel cells with doped-ceria interlayers and composite electrolyte structures with optimized electrode nano-structures. Investigations are on-going in our laboratory as a future work.

Book Thin Film Structures in Energy Applications

Download or read book Thin Film Structures in Energy Applications written by Suresh Babu Krishna Moorthy and published by Springer. This book was released on 2015-03-10 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of thin film structures in energy applications. Each chapter contains both fundamentals principles for each thin film structure as well as the relevant energy application technologies. The authors cover thin films for a variety of energy sectors including inorganic and organic solar cells, DSSCs, solid oxide fuel cells, thermoelectrics, phosphors and cutting tools.

Book Nanostructured Thin Films for Solid Oxide Fuel Cells

Download or read book Nanostructured Thin Films for Solid Oxide Fuel Cells written by Jongsik Yoon and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes and to establish structure-property relations for these cathodes in order to further improve their properties and design new structures. Nanostructured cathode thin films with vertically-aligned nanopores (VANP) were processed using PLD. These VANP structures enhance the oxygen-gas phase diffusivity, thus improve the overall TF-SOFC performance. La0.5Sr0.5CoO3 (LSCO) and La0.4Sr0.6Co0.8Fe0.2O3 (LSCFO) were deposited on various substrates (YSZ, Si and pressed Ce0.9Gd0.1O1.95 (CGO) disks). Microstructures and properties of the nanostructured cathodes were characterized by transmission electron microscope (TEM), high resolution TEM (HRTEM), scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS) measurements. A thin layer of vertically-aligned nanocomposite (VAN) structure was deposited in between the CGO electrolyte and the thin film LSCO cathode layer for TF-SOFCs. The VAN structure consists of the electrolyte and the cathode materials in the composition of (CGO) 0.5 (LSCO) 0.5. The self-assembled VAN nanostructures contain highly ordered alternating vertical columns formed through a one-step thin film deposition using a PLD technique. These VAN structures significantly increase the interface area between the electrolyte and the cathode as well as the area of active triple phase boundary (TPB), thus improving the overall TF-SOFC performance at low temperatures, as low as 400oC, demonstrated by EIS measurements. In addition, the binary VAN interlayer could act as the transition layer that improves the adhesion and relieves the thermal stress and lattice strain between the cathode and the electrolyte. The microstructural properties and growth mechanisms of CGO thin film prepared by PLD technique were investigated. Thin film CGO electrolytes with different grain sizes and crystal structures were prepared on single crystal YSZ substrates under different deposition conditions. The effect of the deposition conditions such as substrate temperature and laser ablation energy on the microstructural properties of these films are examined using XRD, TEM, SEM, and optical microscope. CGO thin film deposited above 500 o.C starts to show epitaxial growth on YSZ substrates. The present study suggests that substrate temperature significantly influences the microstructure of the films especially film grain size.

Book Nanostructured and Advanced Materials for Fuel Cells

Download or read book Nanostructured and Advanced Materials for Fuel Cells written by San Ping Jiang and published by CRC Press. This book was released on 2013-12-07 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boasting chapters written by leading international experts, Nanostructured and Advanced Materials for Fuel Cells provides an overview of the progress that has been made so far in the material and catalyst development for fuel cells. The book covers the most recent developments detailing all aspects of synthesis, characterization, and performance. It offers an overview on the principles, classifications, and types of fuels used in fuel cells, and discusses the critical properties, design, and advances made in various sealing materials. It provides an extensive review on the design, configuration, fabrication, modeling, materials, and stack performance of μ-SOFC technology, and addresses the advancement and challenges in the synthesis, characterization, and fundamental understanding of the catalytic activity of nitrogen-carbon, carbon, and noncarbon-based electro catalysts for PEM fuel cells. The authors explore the atomic layer deposition (ALD) technique, summarize the advancements in the fundamental understanding of the most successful Nafion membranes, and focus on the development of alternative and composite membranes for direct alcohol fuel cells (DAFCs). They also review current challenges and consider future development in the industry. Includes 17 chapters, 262 figures, and close to 2000 references Provides an extensive review of the carbon, nitrogen-carbon, and noncarbon-based electro catalysts for fuel cells Presents an update on the latest materials development in conventional fuel cells and emerging fuel cells This text is a single-source reference on the latest advances in the nano-structured materials and electro catalysts for fuel cells, the most efficient and emerging energy conversion technologies for the twenty-first century. It serves as a valuable resource for students, materials engineers, and researchers interested in fuel cell technology.

Book Nanoengineered Thin Films for Solid Oxide Fuel Cells

Download or read book Nanoengineered Thin Films for Solid Oxide Fuel Cells written by Qing Su and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High temperature Solid Oxide Fuel Cells  Fundamentals  Design and Applications

Download or read book High temperature Solid Oxide Fuel Cells Fundamentals Design and Applications written by S.C. Singhal and published by Elsevier. This book was released on 2003-12-08 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications provides a comprehensive discussion of solid oxide fuel cells (SOFCs). SOFCs are the most efficient devices for the electrochemical conversion of chemical energy of hydrocarbon fuels into electricity, and have been gaining increasing attention for clean and efficient distributed power generation. The book explains the operating principle, cell component materials, cell and stack designs and fabrication processes, cell and stack performance, and applications of SOFCs. Individual chapters are written by internationally renowned authors in their respective fields, and the text is supplemented by a large number of references for further information. The book is primarily intended for use by researchers, engineers, and other technical people working in the field of SOFCs. Even though the technology is advancing at a very rapid pace, the information contained in most of the chapters is fundamental enough for the book to be useful even as a text for SOFC technology at the graduate level.

Book Surface and Interface Characterization of Thin Film Energy Devices

Download or read book Surface and Interface Characterization of Thin Film Energy Devices written by Wŏn-yong Yi and published by Stanford University. This book was released on 2010 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film devices for energy conversion have become a vital area of research to achieve high performance with low cost. As the surface-to-volume ratio becomes significant, the fundamental physics of the surface and interface microstructures and the reaction mechanisms are important to developing such energy devices or processes. My Ph.D. research is thus focus on surface and interface characterization of energy materials for thin film devices with engineered components fabricated by novel technologies. The first part of this dissertation discusses how surface microstructures influence fuel cell performance. According to the high resolution characterization of surface grain boundaries in solid oxide ion conductors, oxygen vacancy segregation at grain boundaries was observed, indicating that the grain boundaries can be more active sites for oxygen incorporation into the electrolyte. This preferred surface reaction at grain boundaries was verified by AC impedance spectroscopy. In addition, using atomic force microscopy, the local rearrangement of charged species on the oxide surface was investigated as a function of time and temperature to quantitatively analyze the diffusivity of oxygen vacancies on the surface. The second part discusses investigation of quantum confined structures that was aimed at contributing to the development of new solar cell architectures. The electronic properties of quantum confined structures, fabricated by atomic layer deposition (ALD), were characterized by scanning tunneling microscopy. In particular, the band gap of lead sulfide quantum well was tuned as a function of well thickness and potential barrier height. In addition, various nano-patterning techniques were developed to fabricate higher-order quantum confined structures, including area-selective ALD.

Book Ionic Conducting Oxide Thin Films

Download or read book Ionic Conducting Oxide Thin Films written by Enrico Traversa and published by The Electrochemical Society. This book was released on 2015 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications

Download or read book Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications written by Rayees Ahmad Zargar and published by John Wiley & Sons. This book was released on 2023-09-18 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: METAL OXIDE NANOCOMPOSITE THIN FILMS FOR OPTOELECTRONIC DEVICE APPLICATIONS The book provides insight into the fundamental aspects, latest research, synthesis route development, preparation, and future applications of metal oxide nanocomposite thin films. The fabrication of thin film-based materials is important to the future production of safe, efficient, and affordable energy as the devices convert sunlight into electricity. Thin film devices allow excellent interface engineering for high-performance printable solar cells as their structures are highly reliable and stand-alone systems can provide the required megawatts. They have been used as power sources in solar home systems, remote buildings, water pumping, megawatt-scale power plants, satellites, communications, and space vehicles. Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications covers the basics of advanced nanometal oxide-based materials, their synthesis, characterization, and applications, and all the updated information on optoelectronics. Topics discussed include the implications of metal oxide thin films, which are critical for device fabrications. It provides updated information on the economic aspect and toxicity, with great focus paid to display applications, and covers some core areas of nanotechnology, which are particularly concerned with optoelectronics and the available technologies. The book concludes with insights into the role of nanotechnology and the physics behind photovoltaics. Audience The book will be an important volume for electronics and electrical engineers, nanotechnologists, materials scientists, inorganic chemists in academic research, and those in industries, exploring the applications of nanoparticles in semiconductors, power electronics, and more.

Book Strain Engineering in Thin Film Electrolytes for Solid Oxide Fuel Cells

Download or read book Strain Engineering in Thin Film Electrolytes for Solid Oxide Fuel Cells written by Aline Fluri and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Micro   Nano Engineering of Fuel Cells

Download or read book Micro Nano Engineering of Fuel Cells written by Dennis Y.C. Leung and published by CRC Press. This book was released on 2015-04-24 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cells are clean and efficient energy conversion devices expected to be the next generation power source. During more than 17 decades of research and development, various types of fuel cells have been developed with a view to meet the different energy demands and application requirements. Scientists have devoted a great deal of time and effort