EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Energy Transfer Dynamics in Biomaterial Systems

Download or read book Energy Transfer Dynamics in Biomaterial Systems written by and published by . This book was released on 2009 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy Transfer Dynamics in Biomaterial Systems

Download or read book Energy Transfer Dynamics in Biomaterial Systems written by Irene Burghardt and published by Springer Science & Business Media. This book was released on 2009-09-22 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The role of quantum coherence in promoting the e ciency of the initial stages of photosynthesis is an open and intriguing question. Lee, Cheng, and Fleming, Science 316, 1462 (2007) The understanding and design of functional biomaterials is one of today’s grand challenge areas that has sparked an intense exchange between biology, materials sciences, electronics, and various other disciplines. Many new - velopments are underway in organic photovoltaics, molecular electronics, and biomimetic research involving, e. g. , arti cal light-harvesting systems inspired by photosynthesis, along with a host of other concepts and device applications. In fact, materials scientists may well be advised to take advantage of Nature’s 3. 8 billion year head-start in designing new materials for light-harvesting and electro-optical applications. Since many of these developments reach into the molecular domain, the - derstanding of nano-structured functional materials equally necessitates f- damental aspects of molecular physics, chemistry, and biology. The elementary energy and charge transfer processes bear much similarity to the molecular phenomena that have been revealed in unprecedented detail by ultrafast op- cal spectroscopies. Indeed, these spectroscopies, which were initially developed and applied for the study of small molecular species, have already evolved into an invaluable tool to monitor ultrafast dynamics in complex biological and materials systems. The molecular-level phenomena in question are often of intrinsically quantum mechanical character, and involve tunneling, non-Born- Oppenheimer e ects, and quantum-mechanical phase coherence.

Book New Trends in Quantum Electrodynamics

Download or read book New Trends in Quantum Electrodynamics written by Roberto Passante and published by MDPI. This book was released on 2020-04-01 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects research and review articles covering some recent trends in nonrelativistic quantum electrodynamics, specifically the interaction of atoms or molecules within the quantum electromagnetic radiation field and the related physical effects. Specific topics covered are: two- and three-body dispersion interactions between atoms and molecules, both in the nonretarded van der Waals and the retarded Casimir–Polder regime; vacuum field fluctuations of the electromagnetic field and their effect in atomic systems; dispersion interactions between uniformly accelerating atoms and relation with the Fulling–Davies–Unruh effect; dynamics of atomic systems under strong electromagnetic fields; symmetries in quantum electrodynamics; and open quantum systems.

Book Charge and Energy Transfer Dynamics in Molecular Systems

Download or read book Charge and Energy Transfer Dynamics in Molecular Systems written by and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Dynamics Simulation

Download or read book Molecular Dynamics Simulation written by Giovanni Ciccotti and published by MDPI. This book was released on 2018-10-08 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printed Edition of the Special Issue Published in Entropy

Book Advances in Quantum Chemistry  Lowdin Volume

Download or read book Advances in Quantum Chemistry Lowdin Volume written by and published by Academic Press. This book was released on 2017-02-12 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Quantum Chemistry: Lowdin Volume presents a series of articles exploring aspects of the application of quantum mechanics to atoms, molecules, and solids. Celebrates Per-Olov Lowdin, who would have been 100 in 2016 Contains papers by many who use his ideas in theoretical chemistry and physics today

Book Quantum Foundations And Open Quantum Systems  Lecture Notes Of The Advanced School

Download or read book Quantum Foundations And Open Quantum Systems Lecture Notes Of The Advanced School written by Theo M Nieuwenhuizen and published by World Scientific. This book was released on 2014-10-03 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advanced School on Quantum Foundations and Open Quantum Systems was an exceptional combination of lectures. These comprise lectures in standard physics and investigations on the foundations of quantum physics.On the one hand it included lectures on quantum information, quantum open systems, quantum transport and quantum solid state. On the other hand it included lectures on quantum measurement, models for elementary particles, sub-quantum structures and aspects on the philosophy and principles of quantum physics.The special program of this school offered a broad outlook on the current and near future fundamental research in theoretical physics.The lectures are at the level of PhD students.

Book Light Harvesting in Photosynthesis

Download or read book Light Harvesting in Photosynthesis written by Roberta Croce and published by CRC Press. This book was released on 2018-01-12 with total page 793 pages. Available in PDF, EPUB and Kindle. Book excerpt: This landmark collective work introduces the physical, chemical, and biological principles underlying photosynthesis: light absorption, excitation energy transfer, and charge separation. It begins with an introduction to properties of various pigments, and the pigment proteins in plant, algae, and bacterial systems. It addresses the underlying physics of light harvesting and key spectroscopic methods, including data analysis. It discusses assembly of the natural system, its energy transfer properties, and regulatory mechanisms. It also addresses light-harvesting in artificial systems and the impact of photosynthesis on our environment. The chapter authors are amongst the field’s world recognized experts. Chapters are divided into five main parts, the first focused on pigments, their properties and biosynthesis, and the second section looking at photosynthetic proteins, including light harvesting in higher plants, algae, cyanobacteria, and green bacteria. The third part turns to energy transfer and electron transport, discussing modeling approaches, quantum aspects, photoinduced electron transfer, and redox potential modulation, followed by a section on experimental spectroscopy in light harvesting research. The concluding final section includes chapters on artificial photosynthesis, with topics such as use of cyanobacteria and algae for sustainable energy production. Robert Croce is Head of the Biophysics Group and full professor in biophysics of photosynthesis/energy at Vrije Universiteit, Amsterdam. Rienk van Grondelle is full professor at Vrije Universiteit, Amsterdam. Herbert van Amerongen is full professor of biophysics in the Department of Agrotechnology and Food Sciences at Wageningen University, where he is also director of the MicroSpectroscopy Research Facility. Ivo van Stokkum is associate professor in the Department of Physics and Astronomy, Faculty of Sciences, at Vrije Universiteit, Amsterdam.

Book The Mesoscopic Theory of Polymer Dynamics

Download or read book The Mesoscopic Theory of Polymer Dynamics written by Vladimir N. Pokrovskii and published by Springer Science & Business Media. This book was released on 2009-12-16 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory presented in this book explains in a consistent manner all dynamics effects observed in very concentrated solutions and melts of linear polymers from a macromolecular point of view. The presentation is compact and self-contained.

Book Nanoscale Biophysics of the Cell

Download or read book Nanoscale Biophysics of the Cell written by Mohammad Ashrafuzzaman and published by Springer. This book was released on 2018-04-12 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Macroscopic cellular structures and functions are generally investigated using biological and biochemical approaches. But these methods are no longer adequate when one needs to penetrate deep into the small-scale structures and understand their functions. The cell is found to hold various physical structures, molecular machines, and processes that require physical and mathematical approaches to understand and indeed manipulate them. Disorders in general cellular compartments, perturbations in single molecular structures, drug distribution therein, and target specific drug-binding, etc. are mostly physical phenomena. This book will show how biophysics has revolutionized our way of addressing the science and technology of nanoscale structures of cells, and also describes the potential for manipulating the events that occur in them.

Book Quantum Dot Molecules

Download or read book Quantum Dot Molecules written by Jiang Wu and published by Springer Science & Business Media. This book was released on 2013-10-28 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: A quantum dot molecule (QDM) is composed of two or more closely spaced quantum dots or “artificial atoms.” In recent years, QDMs have received much attention as an emerging new artificial quantum system. The interesting and unique coupling and energy transfer processes between the “artificial atoms” could substantially extend the range of possible applications of quantum nanostructures. This book reviews recent advances in the exciting and rapidly growing field of QDMs via contributions from some of the most prominent researchers in this scientific community. The book explores many interesting topics such as the epitaxial growth of QDMs, spectroscopic characterization, and QDM transistors, and bridges between the fundamental physics of novel materials and device applications for future information technology. Both theoretical and experimental approaches are considered. Quantum Dot Molecules can be recommended for electrical engineering and materials science department courses on the science and design of advanced and future electronic and optoelectronic devices.

Book Quantum Efficiency in Complex Systems

Download or read book Quantum Efficiency in Complex Systems written by Uli Wu rfel and published by Academic Press. This book was released on 2011 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Radiationless transfer of excitation energy is at the hear of many processes in quantum physics, chemistry and nanotechnology. Currently, the standard picture of an incoherent Förster resonant excitation transfer is being challenged by the experimental findings of a long-lived quantum mechanical coherence in biomolecular light harvesting complexes. The role of this in molecular aggregates is addressed in the first part of this volume. Utilizing some of the underlying principles to optimize nano scale devices, the second part addresses systems of colloid quantum dots and polymer based organic solar cells.

Book Hydrogen Bonding and Transfer in the Excited State

Download or read book Hydrogen Bonding and Transfer in the Excited State written by Ke-Li Han and published by John Wiley & Sons. This book was released on 2011-03-16 with total page 1229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an extensive description of the state-of-the-art in research on excited-state hydrogen bonding and hydrogen transfer in recent years. Initial chapters present both the experimental and theoretical investigations on the excited-state hydrogen bonding structures and dynamics of many organic and biological chromophores. Following this, several chapters describe the influences of the excited-state hydrogen bonding on various photophysical processes and photochemical reactions, for example: hydrogen bonding effects on fluorescence emission behaviors and photoisomerization; the role of hydrogen bonding in photosynthetic water splitting; photoinduced electron transfer and solvation dynamics in room temperature ionic liquids; and hydrogen bonding barrier crossing dynamics at bio-mimicking surfaces. Finally, the book examines experimental and theoretical studies on the nature and control of excited-state hydrogen transfer in various systems. Hydrogen Bonding and Transfer in the Excited State is an essential overview of this increasingly important field of study, surveying the entire field over 2 volumes, 40 chapters and 1200 pages. It will find a place on the bookshelves of researchers in photochemistry, photobiology, photophysics, physical chemistry and chemical physics.

Book Conical Intersections  Theory  Computation And Experiment

Download or read book Conical Intersections Theory Computation And Experiment written by Michael S Schuurman and published by World Scientific. This book was released on 2011-11-04 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of adiabatic electronic potential-energy surfaces, defined by the Born-Oppenheimer approximation, is fundamental to our thinking about chemical processes. Recent computational as well as experimental studies have produced ample evidence that the so-called conical intersections of electronic energy surfaces, predicted by von Neumann and Wigner in 1929, are the rule rather than the exception in polyatomic molecules. It is nowadays increasingly recognized that conical intersections play a key mechanistic role in chemical reaction dynamics. This volume provides an up-to-date overview of the multi-faceted research on the role of conical intersections in photochemistry and photobiology, including basic theoretical concepts, novel computational strategies as well as innovative experiments. The contents and discussions will be of value to advanced students and researchers in photochemistry, molecular spectroscopy and related areas.

Book Reaction Rate Theory and Rare Events

Download or read book Reaction Rate Theory and Rare Events written by Baron Peters and published by Elsevier. This book was released on 2017-03-22 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reaction Rate Theory and Rare Events bridges the historical gap between these subjects because the increasingly multidisciplinary nature of scientific research often requires an understanding of both reaction rate theory and the theory of other rare events. The book discusses collision theory, transition state theory, RRKM theory, catalysis, diffusion limited kinetics, mean first passage times, Kramers theory, Grote-Hynes theory, transition path theory, non-adiabatic reactions, electron transfer, and topics from reaction network analysis. It is an essential reference for students, professors and scientists who use reaction rate theory or the theory of rare events. In addition, the book discusses transition state search algorithms, tunneling corrections, transmission coefficients, microkinetic models, kinetic Monte Carlo, transition path sampling, and importance sampling methods. The unified treatment in this book explains why chemical reactions and other rare events, while having many common theoretical foundations, often require very different computational modeling strategies. Offers an integrated approach to all simulation theories and reaction network analysis, a unique approach not found elsewhere Gives algorithms in pseudocode for using molecular simulation and computational chemistry methods in studies of rare events Uses graphics and explicit examples to explain concepts Includes problem sets developed and tested in a course range from pen-and-paper theoretical problems, to computational exercises

Book Discovering the Future of Molecular Sciences

Download or read book Discovering the Future of Molecular Sciences written by Bruno Pignataro and published by John Wiley & Sons. This book was released on 2014-05-05 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: The European Young Chemist Award has now been awarded four times (2006, 2008, 2010 and 2012). The authors of the previous books based on the competition have become some of the leading scientists in Europe. These books truly provide a glimpse into the future research landscape of European chemistry. Fifteen top contributions have been selected for this single volume covering areas of chemistry and materials science. The broad range of themes is presented in an approachable and readable manner equally appropriate for non-specialists on the topic. The overview of intriguing topics includes chemical synthesis and advanced methodologies as well as materials, nanoscience and nanotechnologies.

Book Supramolecular Materials for Opto Electronics

Download or read book Supramolecular Materials for Opto Electronics written by Norbert Koch and published by Royal Society of Chemistry. This book was released on 2015 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: For years, concepts and models relevant to the fields of molecular electronics and organic electronics have been invented in parallel, slowing down progress in the field. This book illustrates how synthetic chemists, materials scientists, physicists, and device engineers can work together to reach their desired, shared goals, and provides the knowledge and intellectual basis for this venture. Supramolecular Materials for Opto-Electronics covers the basic principles of building supramolecular organic systems that fulfil the requirements of the targeted opto-electronic function; specific material properties based on the fundamental synthesis and assembly processes; and provides an overview of the current uses of supramolecular materials in opto-electronic devices. To conclude, a "what's next" section provides an outlook on the future of the field, outlining the ways overarching work between research disciplines can be utilised. Postgraduate researchers and academics will appreciate the fundamental insight into concepts and practices of supramolecular systems for opto-electronic device integration.